p^2-6p+8=0 р*р - 4р - 2р + 2*4 = 0 (разложим на множители) сгрупируем по парам - первые два(тут можно за скобки вынести "р") и вторые сгрупируем - тут вынесим за скобки "-2" ) р * ( р - 4) - 2 (р - 4) = 0 теперь опять как бы вынесим за скобки (р-4) (р-4) (р-2) = 0 р - 4 = 0 и р - 2 = 0 р = 4 р = 2
данная пара чисел (1;-6) будет являться решением уравнения p^2*x+p*y+8=0 при р = 2 или р = 4
Во- первых, найдем значение производной, которое равно значению углового коэффициента касательной, в данном случае k=7 ( из уравнения касательной - это коэффициент перед х). y'=6x+1; 6x+1=7; 6x=6; x=1. То есть именно в точке х=1 прямая у=7х+а является касательной. Теперь, чтобы найти а, приравняем уравнения прямой и уравнение параболы(так как это их общая точка и значения функции у обоих графиков будут совпадать), потом подставим вместо х значение х=1. 3x^2+x-1=7x+а; 3x^2-6x-1=a; a=3*1-6*1-1; a=-4. ответ: а= - 4. Надеюсь, объяснение более чем подробноею
пара чисел (1;-6) для уравнения p^2*x+p*y+8=0
p^2 - 6p + 8 = 0
D = 36 - 4*8 = 36 - 32 = 4 = 2^2
p1 = (6-2)/2 = 2 p2 = (6+2)/2 = 4
p^2-6p+8=0
р*р - 4р - 2р + 2*4 = 0 (разложим на множители)
сгрупируем по парам - первые два(тут можно за скобки вынести "р")
и вторые сгрупируем - тут вынесим за скобки "-2" )
р * ( р - 4) - 2 (р - 4) = 0
теперь опять как бы вынесим за скобки (р-4)
(р-4) (р-2) = 0
р - 4 = 0 и р - 2 = 0
р = 4 р = 2
данная пара чисел (1;-6) будет являться решением уравнения p^2*x+p*y+8=0 при р = 2 или р = 4