Пусть в первой емкости было х л молока, тогда во второй (х-5)л. Когда из первой емкости отлили во вторую 11 литров, то в ней осталось( х-11) л молока, а во второй стало (х-5+11) л. молока. Известно, что в таком случае, во второй емкости в 2 раза больше молока, чем в первой.
Имеем уравнение:
2*(х-11)=х-5+11
2х-22=х+6
2х-х=6+22
х=28
Значит первоначально в первой емкости было 28 л молока, во второй х-5=28-5=23 л. После того , как перелили 11 литров из первой емкости во вторую стало : в первой емкости :28-11=17 л. молока, во второй 23+11=44 л. молока
ответ : в первой емкости стало 17 литров молока, а во второй - 44 литра
Решить данные неравенства : (x+4)^2<0 x^2+4<0 x^2+3x<0;
1) (x + 4)² < 0
х² + 8х + 16 < 0
Приравнять к нулю и решить квадратное уравнение:
х² + 8х + 16 = 0
D=b²-4ac = 64 - 64 = 0 √D=0
х=(-b±√D)/2a
х=(-8±0)/2
х = -4.
Уравнение квадратичной функции, график - парабола. Значение х = -4 указывает на то, что парабола "стоит" на оси Ох в точке х= -4, весь график выше оси Ох, значит, у < 0 не существует.
Неравенство не имеет решения.
2) x² + 4 < 0
Приравнять к нулю и решить квадратное уравнение:
x² = -4
Уравнение не имеет действительных корней.
Неравенство не имеет решения.
3) x² + 3x < 0
Приравнять к нулю и решить неполное квадратное уравнение:
x² + 3x = 0
х(х + 3) = 0
х₁ = 0;
х + 3 = 0
х₂ = -3;
Уравнение квадратичной функции, график парабола, ветви направлены вверх, пересекают ось Ох в точках х= 0 и х= -3.
На промежутке от х= -3 до х=0 у<0 (парабола ниже оси Ох).
Пусть в первой емкости было х л молока, тогда во второй (х-5)л. Когда из первой емкости отлили во вторую 11 литров, то в ней осталось( х-11) л молока, а во второй стало (х-5+11) л. молока. Известно, что в таком случае, во второй емкости в 2 раза больше молока, чем в первой.
Имеем уравнение:
2*(х-11)=х-5+11
2х-22=х+6
2х-х=6+22
х=28
Значит первоначально в первой емкости было 28 л молока, во второй х-5=28-5=23 л. После того , как перелили 11 литров из первой емкости во вторую стало : в первой емкости :28-11=17 л. молока, во второй 23+11=44 л. молока
ответ : в первой емкости стало 17 литров молока, а во второй - 44 литра
Объяснение:
В решении.
Объяснение:
Решить данные неравенства : (x+4)^2<0 x^2+4<0 x^2+3x<0;
1) (x + 4)² < 0
х² + 8х + 16 < 0
Приравнять к нулю и решить квадратное уравнение:
х² + 8х + 16 = 0
D=b²-4ac = 64 - 64 = 0 √D=0
х=(-b±√D)/2a
х=(-8±0)/2
х = -4.
Уравнение квадратичной функции, график - парабола. Значение х = -4 указывает на то, что парабола "стоит" на оси Ох в точке х= -4, весь график выше оси Ох, значит, у < 0 не существует.
Неравенство не имеет решения.
2) x² + 4 < 0
Приравнять к нулю и решить квадратное уравнение:
x² = -4
Уравнение не имеет действительных корней.
Неравенство не имеет решения.
3) x² + 3x < 0
Приравнять к нулю и решить неполное квадратное уравнение:
x² + 3x = 0
х(х + 3) = 0
х₁ = 0;
х + 3 = 0
х₂ = -3;
Уравнение квадратичной функции, график парабола, ветви направлены вверх, пересекают ось Ох в точках х= 0 и х= -3.
На промежутке от х= -3 до х=0 у<0 (парабола ниже оси Ох).
Решения неравенства: х∈(-3; 0).
Неравенство строгое, скобки круглые.