В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
egorbelov06
egorbelov06
30.07.2020 15:48 •  Алгебра

Геометрическая прогрессия задана условиями (bn); b1=4; bn+1=-3bn
Найти

Показать ответ
Ответ:
polodo6
polodo6
10.03.2022 19:41
ОДЗ :    х² - 5х - 23 ≥ 0
             2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так  просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение

Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод  замены переменной

х²-5х-23=t    ⇒   x²-5x=t+23
x²-5x-16=t+23-16=t+7

Уравнение примет вид
√t + √2·(t+7)=5

или

√2·(t+7) = 5 - √t

Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
(  (5 - √t)≥0    ⇒√ t ≤ 5    ⇒  t ≤  25)

2·( t + 7) = 25 - 10 √t + t

или

10·√t = 25 + t - 2t - 14

10·√t = 11 - t

Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0    t ≤ 11
Получаем уравнение

100 t = 121 - 22 t + t², при этом    t ≤ 11

t² - 122 t + 121 = 0

D=122²-4·121=14884 - 484 = 14400=120

t₁=(122-120)/2= 1     или    t₂= (122+120)/2 = 121  не удовлетворяет                                                          условию ( t ≤ 11)

возвращаемся к переменной х:

х² - 5х - 23 = 1         

х² - 5х - 24 = 0         
D=25+96=121=11²             
x₁=(5-11)/2=-3                      
х₂=(5+11)/2=8                      

Проверка
х = - 3         √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно    1+4=5

х = 8            √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно    1+4=5

ответ. х₁=-3    х₂=8

Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду приз
0,0(0 оценок)
Ответ:
Studio1
Studio1
21.11.2021 06:27
Так как косинус четная функция, то

cos(π/2-3x)= cos (3x-π/2)

Решаем уравнение:
 
cos ( 3x-π/2) = √3/2

3x - π/2 = ± arccos (√3/2) + 2π·n,  n∈ Z

3x - π/2 =  ± (π/6) + 2π·n,  n∈ Z

3x = π/2 ± (π/6) + 2π·n,  n∈ Z

x = π/6 ± (π/12) + (2π/3)·n,  n∈ Z
 
или
вычитая получим:                                    складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n,  n∈ Z                х₂= π/2 + (π/6) + (2π/3)·n,  n∈ Z

х₁= π/3 + (2π/3)·n,  n∈ Z                                 х₂=2π/3  + (2π/3)·n,  n∈ Z

при  n =0  получаем корни

π/3    и   2π/3  

при n = 1

(π/3) + (2π\3) = π  и    (2π/3) + (2π/3)= 4π/3

при  n = 2

(π/3) + (2π/3)·2=(5π\3)    и   ( 2π/3) +(2π/3)·2=(6π\3)=2π    

3π/2 <(5π/3) <2π
3π/2 < 2π≤2π

ответ.  На [3π/2; 2π] два корня:  (5π.3) и 2π
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота