То́ждество (в математике) — равенство, выполняющееся на всём множестве значений входящих в него переменных.
Для начала упростим выражение, которому нужно найти тождественно равное:
-12а + (7 - 2а) = -12а + 7 - 2а = -14а + 7
Все остальные выражения и так максимально упрощены. Значит, просто ищем выражение, соответствующее нашему упрощённому. Это третье по счёту выражение. Можем заключить:
-14а + 7 = -12а + (7 -2а)
2 задание:
Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».
Или
Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием и натуральным показателем обозначается как где — количество множителей.
Привет! Извини, что не могу быстро ответить! После уроков домой прихожу в 16.00-17.00, сижу здесь примерно в это время(после школы)! Задачка твоя: Разложение многочлена! Вынесение общего множителя за скобки. Пример: ab+ac-ad=a(b+a-d). То есть выносишь то, что есть в каждом множителе или тобой выбранном! группировки. Все члены многочлена не имеют общего множителя, но многочлены можно сгруппировать. Пример: 2a+bc+2b+ac=(2a+2b)+(bc+ac)=2(a+b)+c(b+a). Формулы сокращённого умножения! Вернемся к примеру. 1. Это уравнение и т.к. решить это с ходу в 7-8 классе тяжело упрощаем уравнение, а то есть левую часть! x^2-4y^2+4y-1=0 не подходит, т.к. не во всех членах есть одинаковая цифра/буковка. Действуем группировкой :) Группируем члены (x^2)^2-1-4y^2+4y(вроде ясно что я сгруппировала!) Теперь 1 = 1^2, 1^10000, 1^46785. Это понятно?! Теперь применяем к первой части(та что жирным выделена формулу разности квадратов x^2-y^2=(x-y)(x+y), а из второй части(подчёркнутой) из обоих частей выносим 4y Выходит: (x^2-1)(x^2+1)-4y(y+1). Всё: (x^2-1)(x^2+1)-4y(y+1)=0 Если задание требует, то решаем уравнение. Вроде правильно, я бы так сделала! Удачи!
1 задание:
То́ждество (в математике) — равенство, выполняющееся на всём множестве значений входящих в него переменных.
Для начала упростим выражение, которому нужно найти тождественно равное:
-12а + (7 - 2а) = -12а + 7 - 2а = -14а + 7
Все остальные выражения и так максимально упрощены. Значит, просто ищем выражение, соответствующее нашему упрощённому. Это третье по счёту выражение. Можем заключить:
-14а + 7 = -12а + (7 -2а)
2 задание:
Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».
Или
Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием и натуральным показателем обозначается как где — количество множителей.
1) 7² = 7 × 7 = 49
2) 0,5³ = 0,5 × 0,5 × 0,5 = 0,125
3) 1,2² = 1,2 × 1,2 = 1,44
4) (-1)^7 = (-1) × (-1) × (-1) × (-1) × (-1) × (-1) × (-1) = -1
5) (-0,8)³ = (-0,8) × (-0,8) × (-0,8) = -0,512
Задачка твоя:
Разложение многочлена!
Вынесение общего множителя за скобки. Пример: ab+ac-ad=a(b+a-d).
То есть выносишь то, что есть в каждом множителе или тобой выбранном!
группировки. Все члены многочлена не имеют общего множителя, но многочлены можно сгруппировать. Пример: 2a+bc+2b+ac=(2a+2b)+(bc+ac)=2(a+b)+c(b+a).
Формулы сокращённого умножения!
Вернемся к примеру. 1. Это уравнение и т.к. решить это с ходу в 7-8 классе тяжело упрощаем уравнение, а то есть левую часть!
x^2-4y^2+4y-1=0
не подходит, т.к. не во всех членах есть одинаковая цифра/буковка.
Действуем группировкой :) Группируем члены
(x^2)^2-1-4y^2+4y(вроде ясно что я сгруппировала!)
Теперь 1 = 1^2, 1^10000, 1^46785. Это понятно?!
Теперь применяем к первой части(та что жирным выделена формулу разности квадратов x^2-y^2=(x-y)(x+y), а из второй части(подчёркнутой) из обоих частей выносим 4y
Выходит: (x^2-1)(x^2+1)-4y(y+1).
Всё: (x^2-1)(x^2+1)-4y(y+1)=0
Если задание требует, то решаем уравнение.
Вроде правильно, я бы так сделала!
Удачи!