Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).
Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.
Примем работу за 1. х часов надо первому, у часов надо второму. первый за час сделает 1/х часть работы, второй 1/у. Вместе за 6 часов они сделают (1/х + 1/у)*6 или всю работу; уравнение (1/х + 1/у)*6=1 за 6 часов первый сделает 6/х часть работы, второй за 4 часа 4/у часть работы, вместе 6/х + 4/у или 0,8 работы (80%); уравнение 6/х + 4/у=0,8. объединим в систему: 6/х + 6/у =1 6/х +4/у=0,8 вычтем второе уравнение из первого 2/у=0,2 у=10 (часов) подставим в первое уравнение и найдем х 6/х + 6/10=1 6/х=4/10 х=15 (часов) ответ: первому надо 15 ч, второму - 10 ч.
y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.за 6 часов первый сделает 6/х часть работы, второй за 4 часа 4/у часть работы, вместе 6/х + 4/у или 0,8 работы (80%); уравнение 6/х + 4/у=0,8.
объединим в систему:
6/х + 6/у =1
6/х +4/у=0,8 вычтем второе уравнение из первого
2/у=0,2 у=10 (часов)
подставим в первое уравнение и найдем х
6/х + 6/10=1 6/х=4/10 х=15 (часов)
ответ: первому надо 15 ч, второму - 10 ч.