Прежде всего, можно считать, что среди выбранных чисел есть 0. Если это не так, то из всех чисел вычитаем наименьшее, и все разности сохраняются. При этом наибольшее используемое число уменьшится, то есть такой пример можно улучшить.
Занумеруем числа по кругу от 1 до 12. Пусть число 0 получило номер 1. Тогда через 5 номеров от него, то есть 6-м по счёту, находится число, делящееся на 4 (так как между первым и шестым числом находятся 4 числа). Далее прибавляем по 5, и видим, что на 4 делятся все числа: 1-е, 6-е, 11-е, 4-е (11+5-12=4), 9-е, 2-е, 7-е, 12-е, 5-е, 10-е, 3-е, 8-е.
Можно теперь разделить все числа на 4, работая с числами от 0 до n/4 (в конце мы снова умножим на 4), и следя за двумя условиями. Когда промежуточных чисел 1, 2 или 4, всё будет выполнено. То есть остаются 3 и 5. Числа, между которыми 5 промежуточных, будут противоположны, если всё расположить в вершинах правильного 12-угольника. Разность между ними кратна 5.
Заметим, что остатков от деления на 5 имеется всего 5, и поэтому среди 12 чисел найдутся как минимум три, дающие тот же остаток. Ввиду того, что противоположные (по диагонали) числа дают одинаковые остатки, их должно быть по крайней мере 4. Они друг от друга отстоят как минимум на 5, и если начать от нуля, то возникнут 0, 5, 10, 15. Это значит, что более узкого диапазона окажется недостаточно. Следовательно, n/4>=15, и n>=60.
Осталось построить пример с числами от 0 до 60. Чтобы было проще следить, мы перечислим не сами числа, а делённые на 4. В качестве примера подходят числа 0, 2, 1, 3, 9, 5, 10, 12, 6, 8, 4, 15, расположенные по кругу. Видно, что противоположные числа (между которыми 5 чисел) дают разность кратную пяти. А числа через три подразделяются на группы 0, 9, 6; 2, 5, 8; 1, 10, 4; 3, 12, 15, где все разности кратны трём.
Итоговый пример получается умножением на 4 выписанных выше чисел.
Будем считать, что функция f определена ТОЛЬКО на отрезке [-1;1]. Найдем х, при которых исходное неравенство определено. Левая часть определена при -1≤3x+2≤1, -3≤3x≤-1 -1≤x≤-1/3, т.е. х∈[-1;-1/3]. Правая часть определена при -1≤4x²+x≤1 Решаем 4x²+x-1≤0: x1=(-1-√17)/8≈-0,64; x1=(-1+√17)/8≈0,39, т.е. x∈[x1;x2] Решаем 4x²+x+1≥0: D<0, х∈(-∞;+∞) Итак, нам надо найти решения неравенства на интервале [(-1-√17)/8;-1/3].
Воспользуемся тем, что если функция f убывает на некотором интервале, то неравенство f(а)<f(b) равносильно неравенству a>b для любых а и b из этого интервала, т.е. неравенство f(3x+2)<f(4x²+x) равносильно неравенству 3x+2>4x²+x Решаем его: 4x^2-2x-2<0 2x²-x-1<0 x1=-1/2, x2=1 x∈(-1/2;1)
Итак, x∈(-1/2;1)∩[(-1-√17)/8;-1/3]=(-1/2;-1/3], т.к. (-1-√17)/8≈-0,64<-1/2. ответ: x∈(-1/2;-1/3].
Прежде всего, можно считать, что среди выбранных чисел есть 0. Если это не так, то из всех чисел вычитаем наименьшее, и все разности сохраняются. При этом наибольшее используемое число уменьшится, то есть такой пример можно улучшить.
Занумеруем числа по кругу от 1 до 12. Пусть число 0 получило номер 1. Тогда через 5 номеров от него, то есть 6-м по счёту, находится число, делящееся на 4 (так как между первым и шестым числом находятся 4 числа). Далее прибавляем по 5, и видим, что на 4 делятся все числа: 1-е, 6-е, 11-е, 4-е (11+5-12=4), 9-е, 2-е, 7-е, 12-е, 5-е, 10-е, 3-е, 8-е.
Можно теперь разделить все числа на 4, работая с числами от 0 до n/4 (в конце мы снова умножим на 4), и следя за двумя условиями. Когда промежуточных чисел 1, 2 или 4, всё будет выполнено. То есть остаются 3 и 5. Числа, между которыми 5 промежуточных, будут противоположны, если всё расположить в вершинах правильного 12-угольника. Разность между ними кратна 5.
Заметим, что остатков от деления на 5 имеется всего 5, и поэтому среди 12 чисел найдутся как минимум три, дающие тот же остаток. Ввиду того, что противоположные (по диагонали) числа дают одинаковые остатки, их должно быть по крайней мере 4. Они друг от друга отстоят как минимум на 5, и если начать от нуля, то возникнут 0, 5, 10, 15. Это значит, что более узкого диапазона окажется недостаточно. Следовательно, n/4>=15, и n>=60.
Осталось построить пример с числами от 0 до 60. Чтобы было проще следить, мы перечислим не сами числа, а делённые на 4. В качестве примера подходят числа 0, 2, 1, 3, 9, 5, 10, 12, 6, 8, 4, 15, расположенные по кругу. Видно, что противоположные числа (между которыми 5 чисел) дают разность кратную пяти. А числа через три подразделяются на группы 0, 9, 6; 2, 5, 8; 1, 10, 4; 3, 12, 15, где все разности кратны трём.
Итоговый пример получается умножением на 4 выписанных выше чисел.
Левая часть определена при
-1≤3x+2≤1,
-3≤3x≤-1
-1≤x≤-1/3, т.е. х∈[-1;-1/3].
Правая часть определена при
-1≤4x²+x≤1
Решаем 4x²+x-1≤0: x1=(-1-√17)/8≈-0,64; x1=(-1+√17)/8≈0,39, т.е. x∈[x1;x2]
Решаем 4x²+x+1≥0: D<0, х∈(-∞;+∞)
Итак, нам надо найти решения неравенства на интервале
[(-1-√17)/8;-1/3].
Воспользуемся тем, что если функция f убывает на некотором интервале, то неравенство f(а)<f(b) равносильно неравенству a>b для любых а и b из этого интервала, т.е. неравенство f(3x+2)<f(4x²+x) равносильно неравенству
3x+2>4x²+x
Решаем его:
4x^2-2x-2<0
2x²-x-1<0
x1=-1/2, x2=1
x∈(-1/2;1)
Итак, x∈(-1/2;1)∩[(-1-√17)/8;-1/3]=(-1/2;-1/3], т.к. (-1-√17)/8≈-0,64<-1/2.
ответ: x∈(-1/2;-1/3].