Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
1) a) Подставим значения точек в формулу и найдём p и q:
б) Вершину параболы(наименьшее значение, если коэффициент при x² положительный) можно найти по формуле:
найдём q подставив точку (2;-5) в функцию:
2) График лежит выше оси абсцисс, когда отрицателен его дискриминант и коэффициент при x² положительный. У нас коэффициент положительный поэтому смотрим когда дискриминант отрицателен.
3) Подставим все значение в квадратичную функцию, общий вид которой y=ax²+bx+c, составим систему и найдём значения коэффициентов. {3=a·3²+b·3+c {3=a·(-1)²+b·(-1)+c {15=a·5²+b·5+c ↓ {3=9a+3b+c {3=a-b+c {15=25a+5b+c ↓от первого отнимем второе уравнение {3-3=9a-a+3b-(-b)+c-c {3=a-b+c {15=25a+5b+c ↓ {0=8a+4b {3=a-b+c {15=25a+5b+c ↓Выражаем b и c через а {b=-2a {c=3-3a {15=25a+5·(-2a)+(3-3а) ↓Отдельно решим 3 уравение 25a-10a-3a=15-3 12a=12 a=1 ↓Найдём b и c из первых двух уравнений b=-2·1=-2 c=3-3·1=0 Получаем квадратичную функцию: y=x²-2x
a)
Подставим значения точек в формулу и найдём p и q:
б)
Вершину параболы(наименьшее значение, если коэффициент при x² положительный) можно найти по формуле:
найдём q подставив точку (2;-5) в функцию:
2)
График лежит выше оси абсцисс, когда отрицателен его дискриминант и коэффициент при x² положительный. У нас коэффициент положительный поэтому смотрим когда дискриминант отрицателен.
3)
Подставим все значение в квадратичную функцию, общий вид которой y=ax²+bx+c, составим систему и найдём значения коэффициентов.
{3=a·3²+b·3+c
{3=a·(-1)²+b·(-1)+c
{15=a·5²+b·5+c
↓
{3=9a+3b+c
{3=a-b+c
{15=25a+5b+c
↓от первого отнимем второе уравнение
{3-3=9a-a+3b-(-b)+c-c
{3=a-b+c
{15=25a+5b+c
↓
{0=8a+4b
{3=a-b+c
{15=25a+5b+c
↓Выражаем b и c через а
{b=-2a
{c=3-3a
{15=25a+5·(-2a)+(3-3а)
↓Отдельно решим 3 уравение
25a-10a-3a=15-3
12a=12
a=1
↓Найдём b и c из первых двух уравнений
b=-2·1=-2
c=3-3·1=0
Получаем квадратичную функцию:
y=x²-2x