По формуле:
Зная это получаем:
Известно что:
отсюда получаем:
Получаем 2 уравнения:
это табличное значение синуса и получается 2 решения:
аналогично получаем 2 решения:
Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:
Теперь надо найти при каких значениях k и n решения лежат на отрезке
Для этого решаем 2 неравенства
1)
Так как к у нас принадлежит целым числам, то получается что к=0,1,2
2) Теперь ищем n, аналогично:
Поскольку n принадлежит целым числам, то получается что n=0,1
По формуле:
Зная это получаем:
Известно что:
отсюда получаем:
Получаем 2 уравнения:
это табличное значение синуса и получается 2 решения:
аналогично получаем 2 решения:
Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:
Теперь надо найти при каких значениях k и n решения лежат на отрезке
Для этого решаем 2 неравенства
1)
Так как к у нас принадлежит целым числам, то получается что к=0,1,2
2) Теперь ищем n, аналогично:
Поскольку n принадлежит целым числам, то получается что n=0,1
3.1) x + 4 = 1
3.2) 0*x = 20
4) ax = - 8 при a = 0 не имеет корней
5.1)2x + 4 = 9 + x 5.2) - 3x + 5 = 5 - 3x 5.3) 10-4x = -4x + 6
2x - x = 9 - 4 - 3x + 3x = 5 - 5 -4x + 4x = 6 - 10
x = 5 0x = 0 0x = - 4
x ∈(-∞;+∞) решений нет
6) такого значения нет
7.1)a - b = 5
7.2) m + 3 = n
7.3) c = 2d
7.4) 2(x + 7) = x - 4
7.5) x + 10 = 3(x - 2)
8) px = 20
ответ: 1, 2, 4, 5, 10, 20