Пусть ширина х см, длина у см. Площадь S=xy кв см.
Если ширину уменьшить на 2 см, а длину увеличить на 3 см, то ширина станет равно (х-2) см, длина (у+3) см. Площадь (х-2)(у+3) уменьшится на 8 кв см. Уравнение. ху=(х+2)(у+3)+8
Если ширину увеличить на 4 и длину увеличить на 4, то ширина станет равной (х+4), длина - (у+4). Площадь (х+4)(у+4) увеличится на 80 кв. см. Уравнение. (х+4)(у+4)=ху+80
Площадь S=xy кв см.
Если ширину уменьшить на 2 см, а длину увеличить на 3 см, то
ширина станет равно (х-2) см, длина (у+3) см.
Площадь (х-2)(у+3) уменьшится на 8 кв см.
Уравнение.
ху=(х+2)(у+3)+8
Если ширину увеличить на 4 и длину увеличить на 4, то ширина станет равной (х+4), длина - (у+4).
Площадь (х+4)(у+4) увеличится на 80 кв. см.
Уравнение.
(х+4)(у+4)=ху+80
Система уравнений
(х-2)(у+3)+8=ху
(х+4)(у+4)=ху+80
3х-2у+2=0
4х+4у-64=0
или
3х-2у+2=0
х+у-16=0
Умножаем второе уравнение на 2
3х-2у+2=0
2х+2у-32=0
Складываем
5х-30=0
х=6
х+у-16=0
у=16-х=16-6=10
О т в е т. 10 см длина и 6 см ширина
Т.к под корнем не может быть отрицательного значения х+1>0; => х> -1
Возведем в квадрат обе стороны:
√(х+1) ≥ х√2
х+1≥2х²
Перенесем все в левую часть, меняя знак на противоположный:
-2х²+х+1≥0
Домножим на -1 обе части, сменив при этом знак неравенства на противоположный:
2х²-х-1≤0
Приравняем к нулю, чтобы найти корни через Дискриминант:
2х²-х-1=0
Д=(-1)²-4*2*(-1)= 1+8= 9
х1,2= (1±3)/4
х1=1
х2=-0.5
Начертим ось х, и отметим 2 точки: -0.5 и 1, получим: (Смотри рисунок)
Вернемся к Одз:
х принадлежит [-1; 1]
ответ: х принадлежит [-1; 1]