1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√3 = √а
(3√3)² = (√а)²
9*3 = а
а=27;
b) Если х∈[9; 25], то какие значения будет принимать данная функция?
у= √х
у=√9=3;
у=√25=5;
При х∈ [9; 25] у∈ [3; 5].
с) y∈ [14; 23]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
23 = √х
(23)² = (√х)²
х=529;
При х∈ [196; 529] y∈ [14; 23].
d) Найдите при каких х выполняется неравенство у ≤ 4.
√х <= 4
(√х)² <= (4)²
х <= 16;
Неравенство у ≤ 4 выполняется при х <= 16.
x^4-10x^3+35x^2-50x+24=0
2) Рассмотреть все числа на которые может делиться число 24.
Это: 1,2,3,4,6,8,12,24
После проверки каждого числа подходит только 1.
1^4−10×1^3+35×1^2−50×1+24=0
60-60=0
3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1)
=> (x^3−9x^2+26x−24)(x−1)=0
4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0
В данном случае ответ будет (х-2)
5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0
6) Дальше я уже думаю Вы сами знаете как решать.
7) ответ: (x−4)(x−3)(x−2)(x−1)=0
х=1,2,3,4.