1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано