y = - 3x + 2 и y = kx - 5 пересекаются, значит мы приравниваем эти функции:
-3x + 2 = kx - 5
kx + 3x = 7
x(k + 3) = 7
1. x₁ = 7, тогда k должно быть -2 (так как 7 · (-2 + 3) = 7 · 1 = 7)
2. k + 3 = 7 ⇒ k = 4, тогда x₂ должно быть 1 (так как 1 · (4 + 3) = 7)
Отсюда:
1. y₁ = -3 · 7 + 2 = -19
2. y₂ = 4 · 1 - 5 = -1 ≠ y₁ следовательно, подставим x и k из первого заключения:
y₂ = -2 · 7 - 5 = -14 - 5 = -19 = y₁
Получится точка A:
A(7; -19)
Найдём, при каком k функция y = kx + 4 проходит с точкой A, подставив значения из точки A(x;y):
y = kx + 4
-19 = k · 7 + 4
7k = -23
k = -23/7
y = - 3x + 2 и y = kx - 5 пересекаются, значит мы приравниваем эти функции:
-3x + 2 = kx - 5
kx + 3x = 7
x(k + 3) = 7
1. x₁ = 7, тогда k должно быть -2 (так как 7 · (-2 + 3) = 7 · 1 = 7)
2. k + 3 = 7 ⇒ k = 4, тогда x₂ должно быть 1 (так как 1 · (4 + 3) = 7)
Отсюда:
1. y₁ = -3 · 7 + 2 = -19
2. y₂ = 4 · 1 - 5 = -1 ≠ y₁ следовательно, подставим x и k из первого заключения:
y₂ = -2 · 7 - 5 = -14 - 5 = -19 = y₁
Получится точка A:
A(7; -19)
Найдём, при каком k функция y = kx + 4 проходит с точкой A, подставив значения из точки A(x;y):
y = kx + 4
-19 = k · 7 + 4
7k = -23
k = -23/7