В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
qweuio
qweuio
13.04.2021 04:53 •  Алгебра

Графики какой функции на интервале х≥0 изображены на рисунке? Определить r в каждом из случаев.
Достройте график функции при х<0, если известно, что функция 1 четная, нечетная


Графики какой функции на интервале х≥0 изображены на рисунке? Определить r в каждом из случаев. Дост

Показать ответ
Ответ:
azimova0113
azimova0113
15.09.2020 10:39
Пусть b1,b2,b3 члены геометрической прогрессии и a1,a4,a25 соответственно арифметической, из условия следует что b1+b2+b3=114. Из свойств арифм прогрессии, приравнивая соответствующие члены перепишем их как b1=a1, b2=a1+3d, b3=a1+24d суммируя получаем b1+b2+b3=3a1+27d=114 откуда a1+9d=38, выразим отсюда a1=38-9d так как b2/b1=b3/b2 или что тоже самое (a1+3d)/a1=(a1+24d)/(a1+3d) подставляя в уравнение, выражение a1=38-9d получаем (38-6d)/(38-9d)=(38+15d)/(38-6d) или (38-6d)(38-6d)=(38+15d)(38-9d)   18*38*d=171d^2 откуда d=0,d=4 при d=0 ответ b1=b2=b3=38 , при d=4, a1=2 получаем b1=a1=2, b2=a4=14, b3=a25=98. 
0,0(0 оценок)
Ответ:
shadureyski
shadureyski
15.09.2020 10:39

x^{2}+\frac{7}{3} x-\frac{25}{3} =0\\\\x=(\frac{7}{3}):2 +_{-} \sqrt{(\frac{7}{6})^{2} +\frac{25}{3} } \\\\x= -\frac{7}{6}+_{-} \sqrt{\frac{49}{36}+\frac{25}{3} } \\x=-\frac{7}{6}+_{-} \sqrt{\frac{349}{36} } \\x= -\frac{7}{6}+_{-} \frac{\sqrt{349} }{6}\\ x_{1}=-\frac{7}{6}+\frac{\sqrt{349} }{6} \\x_{2}= -\frac{7}{6}-\frac{\sqrt{349} }{6}

сверху первый. В примере а) 2 корня. (я расписала подробно, но ты можешь решить так как я решила пример в б)

Б) D= 1^2-4*2*5

D=-39

корней нет.

2. а) D=(-11)^2-4*1*(-42) = 289 = \sqrt{289} = 17

x_{1}=\frac{11+17}{2}= 14\\\\x_{2} =\frac{11-17}{2}= -3

б) решу методом замены переменной:

y^2-13y+36=0

D=(-13)^2-4*36=25= \sqrt{25} = 5

y_{1}= \frac{13+5}{2}= 9\\y_{2} = \frac{13-5}{2}=4

x^2=9     x^2=4

x_{1}=-3; x_{2}=-2; x_{3}=2; x_{4}=3.

в) D=5^2-4*2*2 = 25-16 = 9 = \sqrt{9} =3

x_{1} = \frac{-5+3}{4} =-\frac{1}{2} \\\\x_{2} = \frac{-5-3}{4}= -2

3. Длина первого катета - х см, тогда длина второго катета

будет (х + 5) см.

Площадь прямоугольного треугольника вычисляется по формуле:

S = \frac{x(x+5)}{2}

x*(x + 5) = 42*2

x² + 5x - 84 = 0

D =  25 + 4*1*84 = 361 = \sqrt{361} = 19

x₁ = (- 5 - 19)/2

x₁ = - 24/2 = - 12 посторонний корень

x₂ = (- 5 + 19)/2

x₂ = 7

7 см - длина первого катета

1) 7 + 5 = 12 (см) - длина второго катета

ответ: 7 см,  12 см

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота