Группа путешественников решила исследовать заброшенный город в джунглях америки. туристам повезло, так как все сооружения были соединены между собой дорогами. туристы посетили все объекты города, пройдя по каждой дороге ровно по одному разу. на центральной городской площади туристы побывали 4 раза.
сколько дорог ведёт с центральной площади, если туристы: 1) первой посетили не площадь и закончили экскурсию не на ней? 2) начали с центральной площади, но закончили не на ней? 3) начали и закончили на центральной площади. , заранее .
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).Ви маєте рівняння: 2ав + 10в - 2а + 10 = 2в(а-5) - 2(a-5).
Спочатку давайте спростимо це рівняння.
Ліва сторона:
2ав + 10в - 2а + 10 = 2ав + 10в - 2а + 10.
Права сторона:
2в(а-5) - 2(a-5) = 2ва - 10в - 2а + 10.
Тепер об'єднаємо подібні члени:
Ліва сторона:
2ав + 10в - 2а + 10.
Права сторона:
2ва - 10в - 2а + 10.
Тепер ми бачимо, що ліва сторона рівняння дорівнює правій стороні, тому:
2ав + 10в - 2а + 10 = 2ва - 10в - 2а + 10.
Знаки "+10" та "-10" знімаються:
2ав + 10в - 2а = 2ва - 10в - 2а.
Перенесемо всі члени з "а" на одну сторону рівняння, а всі члени з "в" на іншу сторону:
2ав - 2ва = 10в - 10в - 2а.
Виділимо спільні члени в кожній групі:
2ав - 2ва = 0.
Тепер факторизуємо це рівняння:
2в(a - а) = 0.
Так як (a - а) дорівнює нулю, ми отримуємо:
2в * 0 = 0.
Отже, множники цього рівняння є: 2в та 0.