Грузовик перевозит партию щебня массой 198 тонн,ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 3 тонны щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.
Случай 1. Пусть одна из вершин треугольника лежит на первой прямой, у которой 10 точек, а две другие - на второй прямой, у которой 6 точек.
Первую вершину можно выбрать а две другие - По правилу произведения, всего треугольников
Случай 2. Пусть одна вершина теперь лежит на второй прямой, а две другие - на первой прямой. Тогда первую вершину можно взять а две другие - По правилу произведения, всего таких треугольников - 6*45=270
Итак, искомое количество треугольников равно
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: