Решим первое неравенство как квадратное уравнение:
х²-6х+8=0
х₁,₂=(6±√36-32)/2
х₁,₂=(6±√4)/2
х₁,₂=(6±2)/2
х₁=4/2=2
х₂=8/2=4
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=4. По графику ясно видно, что у<=0 (как в неравенстве) между значений х, то есть, решения неравенства в интервале х∈ [2, 4].
Значения х= 2 и х=4 входят в число решений неравенства, скобка квадратная.
Решим второе неравенство.
3x-8>=0
3x>=8
x>=8/3
х∈[8/3, +∞), решение второго неравенства.
Неравенство нестрогое, скобка квадратная.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа 2; 8/3 (≈2,7); 4.
Штриховка от 2 до 4, от 4 до 2; от 8/3 (2,7) до + бесконечности.
Пересечение [8/3, 4], это и есть решение системы неравенств.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
[8/3, 4], решение системы неравенств.
Объяснение:
Решить систему неравенств:
х²-6х+8<=0
3x-8>=0
Решим первое неравенство как квадратное уравнение:
х²-6х+8=0
х₁,₂=(6±√36-32)/2
х₁,₂=(6±√4)/2
х₁,₂=(6±2)/2
х₁=4/2=2
х₂=8/2=4
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=4. По графику ясно видно, что у<=0 (как в неравенстве) между значений х, то есть, решения неравенства в интервале х∈ [2, 4].
Значения х= 2 и х=4 входят в число решений неравенства, скобка квадратная.
Решим второе неравенство.
3x-8>=0
3x>=8
x>=8/3
х∈[8/3, +∞), решение второго неравенства.
Неравенство нестрогое, скобка квадратная.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа 2; 8/3 (≈2,7); 4.
Штриховка от 2 до 4, от 4 до 2; от 8/3 (2,7) до + бесконечности.
Пересечение [8/3, 4], это и есть решение системы неравенств.