По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
1)ответ на фото
2)Треугольник АВС, угол В = 90, угол С = 60, АВ = 3√3 см
Угол А = 90 - 60 = 30
Напротив угла А = 30 лежит катет ВС вдвое меньше гипотенузы АС.
Пусть ВС = х, тогда АС = 2х
По теореме пифагора
4x^2 - x^2 = 27
3x^2 = 27
x^2 = 9
x = 3 cм - длина катета ВС
АС = 3 * 2 = 6 см.
ответ: 3 см, 6 см.
3)Так как трапеция равнобедренная, то AB=DC=5 см
EM=14-6=8cм⇒AE=MD=8÷2=4см
Теперь по Теореме Пифогора можем найти BE
AB²=AE²+EB²
BE=AB²-AE²(все под корнем)
ВЕ=5²-4²(всё под корнем)=√9=3 см
Sтрапеции=(BC+AD)÷2·BE
S=(6+14)÷2·3=30см²
ответ: 30 см².
(Чертёж в фото номер2)
4)пусть х меньшая сторона, а 4х большая
х*4х=36
х=3 см - меньшая сторона
3*3=9см кв площадь квадрата,построенного на меньшей стороне прямоугольника
Объяснение:
Удачи:)
|x+1|=x+1, при х+1≥0, т.е при x≥ - 1.
Поэтому строим график
g(x)=x²-3(x+1)+x на [-1;+∞),
упрощаем:
g(x)=x²-2x-3 на [-1;+∞).
Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки
(0;-3) (1;-4)(2;-3)(3;0) (4;5)...
Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график
g(x)=x²-3(-x-1)+x на (-∞;-1),
упрощаем:
g(x)=x²+4x+3 на (-∞;-1).
Строим часть параболы, ветви вверх,
Вершина в точке (-2;-1)
Парабола проходит через точки
(-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)