2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
-13; -15; -17
13; 15; 17
(2x+1) - первое нечетное число;
(2x+3) - второе нечетное число;
(2x+5) - третье нечетное число;
Составим уравнение:
(2x+1)² +(2x+3)² + (2x+5)² = 683
2²x²+2*2x*1²+1+2²x²+2*2x*3+3²+2²x²+2*2x*5+5² = 683
4x²+4x+1+4x²+12x+9+4x²+20x+25 = 683
12x²+36x+36 = 683
12x²+36x+36-683 = 0
12x²+36x-648 = 0
x²+3x-54 = 0 Разделим уравнение на 12
D = b²-4ac = 3²-4*1*(-54) = 9+216 = 225
x₁ = (-b-√D)/2a = (-3-15)/2*1 = -9
x₂ = (-b+√D)/2a = (-3+15)/2*1 = 6
Найдем числа:
при x=-9
(2x+1) = 2*(-9)+1= -17
(2x+3) = 2*(-9)+3= -15
(2x+5) = 2*(-9)+5= -13
при x=6
(2x+1) = 2*6+1=13
(2x+3) = 2*6+3=15
(2x+5) = 2*6+5=17
Проверим решение:
(-13)² + (-15)² + (-17)² = 169+225+289 = 683
13² + 15² +17² = 169+225+289 = 683
ответ: -13; -15; -17
13; 15; 17