27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²? Если а-б = 4, тогда б-а = - 4 12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
1/2х-у = 1/2 * 4.8 - (-2.1) = 1/2 * 4 целых 8/10 + 2 целых 1/10 = 1/2 * 48/10 + 21/10 = 24/10 + 21/10 = 45/10 = 9/2 = 4 целых 1/10
г) х= -4,4. у= -3.
1/2х - у = 1/2 * (-4.4) - (-3) = - 1/2 * 4 целых 4/10 + 3 = - 1/2 * 44/10 + 3 = - 22/10 + 3/1 = - 22/10 + 30/10 = 8/10 = 4/5
27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²?
Если а-б = 4, тогда б-а = - 4
12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
28. Вычислите значение выражения:
а) ах-3у при а=10, х= -5, у= -1/3
10 * (-5) - 3(-1/3) = -50 + 1 = - 49
б) ах+bх+с при а=1/2, х=2, b=-3, с=5,8.
1/2 * 2 - 3 * 2 + 5.8 = 1 - 6 + 5.8 = 0,8
б) c3=c2*q=12*(-4)=-48
в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n
г) c6=3/4*(-4)^6=3*4^5=3*1024=3072
д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей.
e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4
ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.