--Составить уравнени : по теореме Виета
1) х1 = 2, х2 =-10
x² + px + q = 0
х1+х2=-р -p=2-10=-8 >p=8
х1*х2=q q=-20
x² + 8x -20 = 0
2) х1 = 8, х2 =5
-p=8-5=3 >p=-3
q=40
x² - 3x + 40 = 0
3) х1 = -3, х2 =4
-p=1 >p=-1
q=-12
x² - x - 12 = 0
--Найти сумму и произведение корней.
1) х2-10х+9=0
сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q
сумма =10
произведение=9
2) х2-11х+24=0
сумма =11
произведение=24
--Избавиться от избавиться от иррациональности.
1) 2 / (корень из 7 - корень из 2) домножаем на (кор7 +кор2)
2*(кор7 +кор2)/(кор7 +кор2)(кор7-кор2) формула сокращенного умножения, сворачиваем=2*(кор7 +кор2)/(7-2)=
2*(кор7 +кор2)/5=0,4*(кор7 +кор2)
2) 10 / (корень из 3 + корень из 2)=
10*(кор3 -кор2)/(кор3 -кор2)(кор3 +кор2)=10*(кор3 -кор2)/5=
2*(кор3 -кор2)
3) 15 / (корень из 6 - 2)=
15*(кор6 +2)/(кор6 -2)(кор6 +2)=15*(кор6 +2)/(6-4)=15*(кор6 +2)/2=
7,5*(кор6 +2)
x1=(-(-37)+35,5)/2*1=72,5/2
x1=36,25
x2=(-(-37)-35,5)/2=1,5/2
x2=0,75
x1+x2=36,25+0,75=37
x2=36,25*0,75=27,19
2) x(x-210)=0
x1=0
x2=210
x1+x2=0+210=210
x1*x2=0*210=0
3)y(1-y)=0
y1=0
y2=1
y1+y2=0+1=1
y1*y2=0*1=0
4)D=41^2-4*1*(-371)=1681+1484=3165
x1=(-41+56,26)/2=15,26/2
x1=7,63
x2=(-41-56,26)/2=-97,26/2
x2=-48,63
x1+x2=7,63+(-48,63)=-41
x1*x2=7,63*(-48,63)=-371,05
5)y1=√19
y2=-√19
y1+y2=√19-√19=0
y1*y2=√19*(-√19)=-√(19)^2=-19
6)x1=√(10/3)
x2=-√(10/3)
x1+x2=√(10/3)+(-√(10/3))=0
x1*x2=√(10/3)*(-√(10/3))=-10/3
--Составить уравнени : по теореме Виета
1) х1 = 2, х2 =-10
x² + px + q = 0
х1+х2=-р -p=2-10=-8 >p=8
х1*х2=q q=-20
x² + 8x -20 = 0
2) х1 = 8, х2 =5
-p=8-5=3 >p=-3
q=40
x² - 3x + 40 = 0
3) х1 = -3, х2 =4
-p=1 >p=-1
q=-12
x² - x - 12 = 0
--Найти сумму и произведение корней.
1) х2-10х+9=0
сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q
сумма =10
произведение=9
2) х2-11х+24=0
сумма =11
произведение=24
--Избавиться от избавиться от иррациональности.
1) 2 / (корень из 7 - корень из 2) домножаем на (кор7 +кор2)
2*(кор7 +кор2)/(кор7 +кор2)(кор7-кор2) формула сокращенного умножения, сворачиваем=2*(кор7 +кор2)/(7-2)=
2*(кор7 +кор2)/5=0,4*(кор7 +кор2)
2) 10 / (корень из 3 + корень из 2)=
10*(кор3 -кор2)/(кор3 -кор2)(кор3 +кор2)=10*(кор3 -кор2)/5=
2*(кор3 -кор2)
3) 15 / (корень из 6 - 2)=
15*(кор6 +2)/(кор6 -2)(кор6 +2)=15*(кор6 +2)/(6-4)=15*(кор6 +2)/2=
7,5*(кор6 +2)