Основание АD трапеции ABCD лежит в плоскости α .Через точки B и C проведены параллельные прямые , пересекающие плоскость α в точках E и F соответственно. 1) Каково взаимное расположение прямых EF и AB? (Уточняем - в плоскости α лежит только АД, а ВС - не лежит. В противном случае ВЕ и СF не пересекали бы плоскость α, а лежали в ней). ВС параллельна АD ⇒ параллельна плоскости α. АD параллельна ВС, ЕF параллельна ВС. Две прямые , параллельные третьей прямой, параллельны. ⇒ ЕF параллельна АD и параллельна плоскости АВСD, но не параллельна АВ, которая пересекается с АD. ⇒ Прямые EF и AB - скрещивающиеся. 2) Чему равен угол между прямыми EF и AB, если ABC = 150°?
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
Сумма углов при боковой стороне трапеции 180°, следовательно, угол ВАD=180°-150°=30°.
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
ЕК|║АВ; ЕF║АD Углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые.⇒
∠FЕК=∠ВАD=30°
-----------
ВЕ и СF могут быть проведены в плоскости АВСD. Тогда ЕD будет лежать на АD и в этом случае непараллельные прямые EF и АВ лежат в одной плоскости. Тогда АВ и EF пересекyтся.
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
1) Каково взаимное расположение прямых EF и AB?
(Уточняем - в плоскости α лежит только АД, а ВС - не лежит. В противном случае ВЕ и СF не пересекали бы плоскость α, а лежали в ней).
ВС параллельна АD ⇒ параллельна плоскости α.
АD параллельна ВС, ЕF параллельна ВС. Две прямые , параллельные третьей прямой, параллельны.
⇒ ЕF параллельна АD и параллельна плоскости АВСD, но не параллельна АВ, которая пересекается с АD.
⇒ Прямые EF и AB - скрещивающиеся.
2) Чему равен угол между прямыми EF и AB, если ABC = 150°?
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
Сумма углов при боковой стороне трапеции 180°, следовательно, угол ВАD=180°-150°=30°.
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
ЕК|║АВ; ЕF║АD Углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые.⇒
∠FЕК=∠ВАD=30°
-----------
ВЕ и СF могут быть проведены в плоскости АВСD.
Тогда ЕD будет лежать на АD и в этом случае непараллельные прямые EF и АВ лежат в одной плоскости. Тогда АВ и EF пересекyтся.