23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Для начала надо понять, что такое 6: 6=3*2
Признаки делимости на 2:
четные числа то есть 2,4,6... таких будет 50
из этих пятидесяти надо найти те что делятся на 3
То есть сумма цифр должна делится на 3:
А при умножении на нечетные числа число три даст нечетное число
При умножении тройки на четные числа в результате получится четное число
Найдем сколько всего чисел делятся на 3 из 100 100:3=33 числа
Из них половина четных половина нечетных четных 16, так как первое 3 и последнее 33, то есть нечетных будет на 1 больше.
Это числа: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96
Теперь, те что будут давать в остатке 1: 6+1, 12+1, 18+1... 96+1 таких чисел будет 17 (последнее 97, не превышает 100) + Первое 1
Теперь те что будут давать в остатке 3: 6+3, 12+3, 18+3... 96+3 таких чисел тоже будет 17 (последнее 99, не превышет 100) + Первое 3