Теорема Виета позволяет угадывать целые корни квадратного трехчлена Вот например
где p = 5 q = 6 По теореме можем сказать, что сумма корней должна быть равна 5, а произведение должно равняться 6. Можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Очевидно: 6 = 2 * 3, 2 + 3 = 5. Отсюда должно следовать, что числа х1 =2 и х2 = 3 - искомые корни.
Или можно расширить рамки использования этой теоремы, например, для решения систем уравнений
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
Вот например
где p = 5 q = 6
По теореме можем сказать, что сумма корней должна быть равна 5, а произведение должно равняться 6.
Можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5.
Очевидно: 6 = 2 * 3, 2 + 3 = 5.
Отсюда должно следовать, что числа х1 =2 и х2 = 3 - искомые корни.
Или можно расширить рамки использования этой теоремы, например, для решения систем уравнений
решаем систему и получаем
х1 =2 и х2 = 3