4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.
2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = − и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
3. Найдите сумму бесконечной геометрической прогрессии −4, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии −6, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
Объяснение:
группировки на конкретном примере:
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
Рассмотрим разложение многочлена на множители
группировки ещё на одном примере:
15a 2 – 13a – 20 =
представим слагаемое –13а , как – 25а + 12а ;
= 15a 2 – 25а + 12а – 20 =
сгруппируем слагаемые скобками;
= (15a 2 – 25а) + (12а – 20) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 5a • (3a – 5) + 4 • (3а – 5) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (3а – 5),
который мы вынесем за скобку;
= (5a + 4) • (3a – 5) .