На примере первого уравнения объясню, как решать методом интервалов. |3x-9|-|x+2|=7 В уравнении два модуля: |3x-9| и |x+2|. Чтобы избавиться от них, следует изучить знаки подмодульных выражений: 3x-9 и x+2. Каждое из них обращается в нуль при х=3 и х=-2 соответственно.Отметим эти числа на числовой оси: -23
Числовая прямая разделена на три интервала двумя точками х=-2 и х=3. Являются ли эти два числа корнями данного уравнения, можно проверить подстановкой. Нет, не являются. Искомые корни могут находиться на одном из интервалов: x<-2; -2<x<3; x>3. Рассмотрим подробно уравнение на каждом из этих интервалов. 1) На интервале x<-2 имеем: |3x-9| =-(3x-9), т.к. при x<-2 разность 3x-9<0; |x+2|=-(x+2), т.к. при x<-2 сумма x+2<0. В результате этого анализа получим уравнение без модулей, но с условием x<-2. Запишем это условие в виде системы и решим её: {x<-2 {-3x+9+x+2=7; -2x+11=7;-2x=-4; x=2( 2 не входит в указанный интервал) Система не имеет решений. 2) На интервале -2<x<3 имеем: |3x-9|=-(3x-9), т.к. при -2<x<3 разность 3x-9<0; |x+2|=x+2,т.к. при -2<x<3 сумма x+2>0. Запишем систему и решим её: {-2<x<3 {-3x+9-x-2=7; -4x+7=7; -4x=0; x=0( ноль входит в заданный интервал) Один корень найден. Часть ответа получена. 3) На интервале x>3 имеем: |3x-9|=3x-9, т.к. при x>3 разность 3x-9>0; |x+2|=x+2, т.к. при x>3 сумма x+2>0.Запишем систему и решим её: {x>3 {3x-9-x-2=7; 2x-11=7; 2x=18; x=9 ( входит в промежуток x>3). ответ: 0; 9
|3x-9|-|x+2|=7
В уравнении два модуля: |3x-9| и |x+2|. Чтобы избавиться от них, следует изучить знаки подмодульных выражений: 3x-9 и x+2.
Каждое из них обращается в нуль при х=3 и х=-2 соответственно.Отметим эти числа на числовой оси:
-23
Числовая прямая разделена на три интервала двумя точками
х=-2 и х=3. Являются ли эти два числа корнями данного уравнения, можно проверить подстановкой. Нет, не являются. Искомые корни могут находиться на одном из интервалов: x<-2; -2<x<3; x>3.
Рассмотрим подробно уравнение на каждом из этих интервалов.
1) На интервале x<-2 имеем: |3x-9| =-(3x-9), т.к. при x<-2 разность
3x-9<0; |x+2|=-(x+2), т.к. при x<-2 сумма x+2<0. В результате этого анализа получим уравнение без модулей, но с условием x<-2.
Запишем это условие в виде системы и решим её:
{x<-2
{-3x+9+x+2=7; -2x+11=7;-2x=-4; x=2( 2 не входит в указанный интервал)
Система не имеет решений.
2) На интервале -2<x<3 имеем: |3x-9|=-(3x-9), т.к. при -2<x<3 разность 3x-9<0; |x+2|=x+2,т.к. при -2<x<3 сумма x+2>0.
Запишем систему и решим её:
{-2<x<3
{-3x+9-x-2=7; -4x+7=7; -4x=0; x=0( ноль входит в заданный интервал)
Один корень найден. Часть ответа получена.
3) На интервале x>3 имеем: |3x-9|=3x-9, т.к. при x>3 разность 3x-9>0;
|x+2|=x+2, т.к. при x>3 сумма x+2>0.Запишем систему и решим её:
{x>3
{3x-9-x-2=7; 2x-11=7; 2x=18; x=9 ( входит в промежуток x>3).
ответ: 0; 9
1) 5 подарочных наборов и 5 коробок
как можно разместить?
В первую коробку мы можем положить любой из 5 наборов
во вторую коробку - любой из 4
в третью- любой из 3
в 4ю- любой из 2
и в 5-ю оставшийся набор
всего
2) даны цифры 1,2,3,4,7
нужно составить 4-х значное число- кратное 6
На 6 делятся числа кратные 2 и 3
кратные 2 должны оканчиваться на 2 или 4
кратные трем должны давать в семме цифр числа - число кратное 3
Первый вариант- наше число заканчивается на 2
тогда на оставшиеся 3 места идут 1,3,4,7
но 1+3+4+2 не кратно 3, 1+3+7+2 не кратно 3, 1+4+7+2 не кратно 3 и 3+4+7+2 не кратно 3
Второй вариант- наше число заканчивается на 4
тогда единственная комбинация это число состоящее из цифр 1,3,7, и 4
Количество таких чисел 3*2*1=6
3) Есть 6 маек и 4 наклейки
первую наклейку клеим на любую из 6, вторую на любую из 5, третью- на любую из 4 и последнюю наклейку на любую из 3
тогда всего