Вам дано уравнение параболы y=f(x)=x² - 3x -8 тогда уравнение касательной y=f'(x°)(x-x°)+f(x°) найдём f'(x)=(x²- 3x -8)'=2x-3 Уравнение касательной примет вид y=(2x°-3)(x-x°)+x°²-3x°-8 известно, что касательная проходит через точку А(-1; -5), т.е. в уравнение касательной подставим y=-5, x=-1, тогда -5=(2x°-3)(-1-x°)+x°²-3x°-8 -5= -2x°-2x°²+3+3x°+x°²-3x°-8 -5= -x°²-2x° -5 x°²+2x°=0 x°(x°+2)=0 1)x°=0; 2)x°= -2 Подставляем эти значения в y=(2x°-3)(x-x°)+x°²-3x°-8 и записываем ответ для двух касательных у1= -3x-8 у2= -7x -12
3sin^2(2x) + 10sin(2x) + 3 = 0.
Введем новую переменную, пусть sin(2x) = а.
Получается уравнение 3а^2 + 10а + 3 = 0.
Решаем квадратное уравнение с дискриминанта:
a = 3; b = 10; c = 3;
D = b^2 - 4ac; D = 10^2 - 4 * 3 * 3 = 100 - 36 = 64 (√D = 8);
x = (-b ± √D)/2a;
а1 = (-10 - 8)/(2 * 3) = -18/6 = -3.
а2 = (-10 + 8)/6 = -2/6 = -1/3.
Возвращаемся к замене sin(2x) = а.
1) sin(2x) = -3 (не может быть, синус любого угла больше -1, но меньше 1).
2) sin(2x) = -1/3.
Отсюда 2х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Делим все на 2: х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
тогда уравнение касательной
y=f'(x°)(x-x°)+f(x°)
найдём f'(x)=(x²- 3x -8)'=2x-3
Уравнение касательной примет вид
y=(2x°-3)(x-x°)+x°²-3x°-8
известно, что касательная проходит через точку А(-1; -5),
т.е. в уравнение касательной подставим y=-5, x=-1, тогда
-5=(2x°-3)(-1-x°)+x°²-3x°-8
-5= -2x°-2x°²+3+3x°+x°²-3x°-8
-5= -x°²-2x° -5
x°²+2x°=0
x°(x°+2)=0
1)x°=0; 2)x°= -2
Подставляем эти значения в y=(2x°-3)(x-x°)+x°²-3x°-8
и записываем ответ для двух касательных
у1= -3x-8
у2= -7x -12