Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
а тангенс в кубе от двух икс это сложная функция, производная сложной функции находится как производная внешней функции умножить на производную внутренней, а у нас 2 внешних, т.е. сначала степенная( в кубе), затем от тригонометрической функции(тангенс), затем от аргумента(2х).
Начнем с внешней функции, производная внешней функции (p³)'=3p²
1/3(3*tg²(2x), теперь производная от тангенса она равна 1/cos²(2x)
2/cos²(2x)
Объяснение:
1/3 вынесем как константу
а тангенс в кубе от двух икс это сложная функция, производная сложной функции находится как производная внешней функции умножить на производную внутренней, а у нас 2 внешних, т.е. сначала степенная( в кубе), затем от тригонометрической функции(тангенс), затем от аргумента(2х).
Начнем с внешней функции, производная внешней функции (p³)'=3p²
1/3(3*tg²(2x), теперь производная от тангенса она равна 1/cos²(2x)
1/3 и 3 сократились, остается
1/cos²(2x) умножить на производную 2х равную 2
Окончательный ответ
2/cos²(2x)