ответ: -1
Объяснение:
Рекуррентное соотношение:
an+2=an+1-an
Показывает, что каждый следующий член последовательности, равен разности двух предыдущих, а значит эта последовательность имеет вид:
0,1,1,0,-1,-1,0,1,1..., то есть cпустя каждые 6-ть членов последовательность начинает повторятся, иначе говоря, период повторения равен 6.
Нам необходимо найти 101-й член последовательности.
Найдем остаток от деления 101 на 6:
101 = 6*16 + 5, то есть остаток 5, таким образом, нам нужно 5-е число в периоде: 0,1,1,0,-1,-1
Откуда:
a101 = -1
ответ: -1
Объяснение:
Рекуррентное соотношение:
an+2=an+1-an
Показывает, что каждый следующий член последовательности, равен разности двух предыдущих, а значит эта последовательность имеет вид:
0,1,1,0,-1,-1,0,1,1..., то есть cпустя каждые 6-ть членов последовательность начинает повторятся, иначе говоря, период повторения равен 6.
Нам необходимо найти 101-й член последовательности.
Найдем остаток от деления 101 на 6:
101 = 6*16 + 5, то есть остаток 5, таким образом, нам нужно 5-е число в периоде: 0,1,1,0,-1,-1
Откуда:
a101 = -1
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0