Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
Укажем линейные функции, графики которых параллельны, и графики которых пересекаются.
Если мы рассматриваем прямые, располагающиеся в одной плоскости, то они могут пересекаться, совпадать, быть параллельными.
Уравнение прямой имеет следующий вид:
y = k * x + b, где k и b - числовые коэффициенты.
Две прямые будут параллельными, если их угловые коэффициенты k будут равны. При этом значения коэффициентов b значения не имеют.
y = 2 * x и y = 2 * x + 10 - параллельные прямые.
y = 2 * x и y = 10 - x - пересекающиеся прямые.
Вроде так