Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.
ответ: х = 0 .
Объяснение:
∛( 1 + x ) + ∛( 1 - x ) = 2 ; піднесемо до куба :
1 + x + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² + 1 - x = 8 ;
2 + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 8 ;
3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 6 ;
[∛( 1 + x )]²∛( 1 - x ) + ∛( 1 + x ) [∛( 1 - x )]² = 2 ;
∛( 1 + x )∛( 1 - x )[ ∛( 1 + x ) + ∛( 1 - x ) ] = 2 ;
2
∛( 1 + x )∛( 1 - x ) * 2 = 2 ;
∛( 1 + x )∛( 1 - x ) = 1 ; піднесемо ще раз до куба
( 1 + x )( 1 - x ) = 1 ;
1 - х² = 1 ;
х² = 0 ;
х = 0 . В - дь : х = 0 .
Перевірку робити не потрібно , бо маємо радикали непарного степеня
і піднесення до непарного степеня .
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.
ответ: х = 0 .
Объяснение:
∛( 1 + x ) + ∛( 1 - x ) = 2 ; піднесемо до куба :
1 + x + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² + 1 - x = 8 ;
2 + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 8 ;
3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 6 ;
[∛( 1 + x )]²∛( 1 - x ) + ∛( 1 + x ) [∛( 1 - x )]² = 2 ;
∛( 1 + x )∛( 1 - x )[ ∛( 1 + x ) + ∛( 1 - x ) ] = 2 ;
2
∛( 1 + x )∛( 1 - x ) * 2 = 2 ;
∛( 1 + x )∛( 1 - x ) = 1 ; піднесемо ще раз до куба
( 1 + x )( 1 - x ) = 1 ;
1 - х² = 1 ;
х² = 0 ;
х = 0 . В - дь : х = 0 .
Перевірку робити не потрібно , бо маємо радикали непарного степеня
і піднесення до непарного степеня .