хелп ми добрые люди класс можете кратко и понятно объяснить тему "область определения и область изменения функции" и тему "четность, нечетность, периодичность функций" чтобы легко было понять может какой-то есть алгоритм решения для заданий по этим темам, потому что ну вот никак не пойму я эти темы
Дана систему:
{x^2+2y^2=17
{x^2-2xy=-3.
Используем метод подстановки. Из второго уравнения определяем:
у = (x^2 + 3)/2х и подставим в первое.
x^2 + 2((x^4 + 6x^2 + 9)/4x^2) = 17. Приводим к общему знаменателю.
4x^4 + 2x^4 + 12x^2 + 18 = 68x^2. Получаем биквадратное уравнение.
6x^4 - 56x^2 + 18 = 0, сократим на 2: 3x^4 - 28x^2 + 9 = 0.
Замена x^2 = t. 3t^2 - 28t + 18 = 0.
Ищем дискриминант:
D=(-28)^2-4*3*9=784-4*3*9=784-12*9=784-108=676;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root676-(-28))/(2*3)=(26-(-28))/(2*3)=(26+28)/(2*3)=54/(2*3)=54/6=9;
t_2=(-2root676-(-28))/(2*3)=(-26-(-28))/(2*3)=(-26+28)/(2*3)=2/(2*3)=2/6=1/3.
Получаем 4 ответа: х = +-3 и х = +-(1/√3)
х = 3, у = (9 + 3)/(2*3) = 12/6 = 2,
х = -3, у = (9 + 3)/(2*(-3)) = 12/(-6) = -2,
х = (1/√3), у = ((1/3) + 3)/(2*(1/√3)) = 5/√3,
х = (-1/√3), у = ((1/3) + 3)/(2*(-1/√3)) = -5/√3.
Так как полный оборот(360 градусов) на еденичной окружности равен 2пи, а половинный( 180 градусов) равен пи, то 5п, можно упростить до п, так как это два полных оборота плюс один полуоборот( 2п+2п+п).
Получим: tg(pi/2 - a), по формулам приведения увидем, что tg(pi/2 - a)=сtg(a)
У формул приведения есть своя логика, в данном случае такая, если оборот равен пи/2, то есть 90 градусов или 3пи/2, то есть270 градусов, то синус меняется на косинус и наоборот, а тангенс меняется на катангенс и наоборот, при Пи(180 градусов) или нуле, остаётся прежним.
Далее смотрим на то, положителен или отрицателен в данном случае тангенс в этой четверти, Так как пи( 180 градусов), то п-а(то есть малая часть), будет находиться во второй четверти,а тангенс там положительный, соответственно знак остаётся таким же. елси бы был отрицательный, то взяли бы минус ctg a.
Вот такие аладушки. :)