В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Евгений060704
Евгений060704
29.04.2021 16:14 •  Алгебра

Хелп ми найдите наименьшее и наибольшее значения заданной функции на заданном промежутке у=3/2х в степени 2/3 - х, (0; 8)

Показать ответ
Ответ:
bamnames
bamnames
04.10.2020 03:19
Производная функции: y'=3/2*2/3*x^(-1/3)=[1/x^(1/3)]-1.
y'=[1/x^(1/3)]-1=0=>x=1. y'>0=>xє(0;1). y'<0=>xє(1;+oo).
f(1)=1/2.  (1;1/2)- точка максимума- наибольшее значение функции на интервале (0;8). Слева функция не определена в точке х=0, поэтому ищем правосторонний предел данной функции при х->0; lim(3/2*x^(2/3)-x)=0.
Слева наименьшее значение у=0. Справа: y(8)=3/2*8^2/3-8=-2.
ответ: Fmax=1/2, Fmin=-2.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота