Русская классика ? на 6к.>
Зарубежная классика ?
Всего 18к.
Объяснение:
1.Решение по действиям:
1) (18-6):2=6(к) зарубежная классика.
2)18-6=12(к) русская классика.
Зарубежная классика - 6 книг.
Русская классика - 12книг.
2.Решение задачи с
уравнения:
Пусть Ира прочитала х книг
зарубежной классики, тогда
русской классики она прочла
(х+6) книг. Всего за лето Ира
прочитала х+(х+6) книг, что по
условию задачи составляет
18 книг. Составим уравнение:
х+(х+6)=18
х+х+6=18
2х+6=18
2х=18-6
2х=12
х=12:2
х=6 книг зарубежной классики.
6+6=12 книг русской классики.
Русская классика - 12 книг.
Описание функции по ее графику.
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.
Русская классика ? на 6к.>
Зарубежная классика ?
Всего 18к.
Объяснение:
1.Решение по действиям:
1) (18-6):2=6(к) зарубежная классика.
2)18-6=12(к) русская классика.
Зарубежная классика - 6 книг.
Русская классика - 12книг.
2.Решение задачи с
уравнения:
Пусть Ира прочитала х книг
зарубежной классики, тогда
русской классики она прочла
(х+6) книг. Всего за лето Ира
прочитала х+(х+6) книг, что по
условию задачи составляет
18 книг. Составим уравнение:
х+(х+6)=18
х+х+6=18
2х+6=18
2х=18-6
2х=12
х=12:2
х=6 книг зарубежной классики.
6+6=12 книг русской классики.
Зарубежная классика - 6 книг.
Русская классика - 12 книг.
Описание функции по ее графику.
Объяснение:
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.