Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
1) За 3000, внесённые в первый год, начисления составят 10(лет) * 5(%год.) = 50% от 3000, т.е. 1500, плюс сами 3000 итого 1500 + 3000 = 4500 р.
2) За 3000, внесённые во второй год, начисления составят 9(лет) * 5(%год.) = 45% от 3000, т.е 1350, плюс сами 3000 итого 1350 + 3000 = 4350 р.
Так, за 3000, вносимые за каждый следующий год, начисления будут составлять на 150 р. меньше, чем за 3000, внесённые в предыдущем году.
3-й год - 4200 р.
4-й год - 4050 р.
5-й год - 3900 р.
6-й год - 3750 р.
7-й год - 3600 р.
8-й год - 3450 р.
9-й год - 3300 р.
10-й год - 3150 р.
Сумма начислений и самих внесённых денег за 10 лет будет равна 4500 + 4350 + 4200 + 4050 + 3900 + 3750 + 3600 + 3450 + 3300 + 3150 = 38 250 р.
ответ: 38 250 р.