Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
Найдем производную функции. y'=6x-6. Приравним производную функции к нулю.
6x-6=0. Найдем точки экстремума. 6x=6, x=1. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то x=1- это точка минимума. Найдем значение функции наданной точке. y=3*1^2-6*1+1=3-6+1=-2. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
P.S. Если вы ещё не производную, воспользуйтесь первым
Это можно понять, если добавить важный, упущенный вами момент: Функция возрастает или убывает НА ТАКОМ-ТО ПРОМЕЖУТКЕ
Привожу определение строго возрастающей функции: Функция называется возрастающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо . Другими словами, большему значению аргумента соответствует большее значение функции.
за этим определением показывается, что функция есть строго возрастающей на интервале за аналогичным определением эта же функция есть строго убывающей на интервале
Найдем x0. x0=-b/(2a)=-(-6)/(2*3)=1
Найдем значение y при x=1.
y=3*1^2-6*1+1=3-6+1=-2.
Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
Найдем производную функции. y'=6x-6. Приравним производную функции к нулю.
6x-6=0. Найдем точки экстремума. 6x=6, x=1. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то x=1- это точка минимума. Найдем значение функции наданной точке. y=3*1^2-6*1+1=3-6+1=-2. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
P.S. Если вы ещё не производную, воспользуйтесь первым
Функция возрастает или убывает НА ТАКОМ-ТО ПРОМЕЖУТКЕ
Привожу определение строго возрастающей функции:
Функция называется возрастающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо . Другими словами, большему значению аргумента соответствует большее значение функции.
за этим определением показывается, что функция есть строго возрастающей на интервале
за аналогичным определением эта же функция есть строго убывающей на интервале