В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lilyabelousova
lilyabelousova
10.06.2021 02:35 •  Алгебра

хотя бы одно-два задания...


хотя бы одно-два задания...

Показать ответ
Ответ:
LISAIZKOSHMAROV
LISAIZKOSHMAROV
13.11.2022 10:39
 x-2y=-28;x-y=-2 

Solution :

 {x,y} = {24,26} 

System of Linear Equations entered :

  [1] x - 2y = -28   [2] x - y = -2

Graphic Representation of the Equations :

-2y + x = -28 y + x = -2
olve by Substitution :

// Solve equation [2] for the variable  x  
 

[2] x = y - 2

// Plug this in for variable  x  in equation [1]

  [1] (y -2) - 2y = -28   [1] - y = -26

// Solve equation [1] for the variable  y  

  [1] y = 26 

// By now we know this much :

  x = y-2   y = 26

// Use the  y  value to solve for  x  

  x = (26)-2 = 24 

Solution :

 {x,y} = {24,26} 
0,0(0 оценок)
Ответ:
бекзат2008
бекзат2008
31.05.2021 23:43

1. Область определения функции: множество всех действительных чисел

\mathrm{D(f)=(-\infty;+\infty).}

2. Чётность и нечётность функции: проверим на четность функции с соотношений: \mathrm{f(-x)=-f(x)=f(x)}

\boldsymbol{f(-x)=4\cdot(-x)^2-(-x)^4=4x^2-x^4=f(x)}

Итак, f(-x) = f(x) значит заданная функция является четной.


3. Точки пересечения с осями координат.

3.1. точки пересечения с осью Ох. График функции пересекает ось абсциссу при f = 0 значит нужно решить уравнение:

\boldsymbol{4x^2-x^4=0}\\ \boldsymbol{-x^2(x^2-4)=0}\\ \boldsymbol{x_1=0;}\\ \boldsymbol{x_2=2}\\ \boldsymbol{x_3=-2}

(0;0), (2;0), (-2;0) - точки.

3.2. точки пересечения с осью Оу. График пересекает ось ординат, когда х=0, т.е. подставляем x=0 в функцию, получим

\boldsymbol{f(0)=4\cdot0^2-0^4=0}

(0;0) - точка


4. Функция не является периодичной.

5. Экстремумы функции

Для того, чтобы найти экстремумы, нужно решить уравнение f'(x)=0

\boldsymbol{f'(x)=(4x^2-x^4)'=(4x^2)'-(x^4)'=8x-4x^3}\\\boldsymbol{8x-4x^3=0}\\ \boldsymbol{-4x(x^2-2)=0}\\ \boldsymbol{x_1=0}\\ \boldsymbol{x_{2,3}=\pm\sqrt{2}}

Найдем интервалы возрастание и убывания функции:

______+____(-√2)_____-____(0)________+_____(√2)______-____

Функция возрастает на промежутке x \in (-\infty;-\sqrt{2})\cup(0;\sqrt{2} ), а убывает - x \in (-\sqrt{2};0 )\cup(\sqrt{2} ;+\infty)

x=\pm\sqrt{2} - локальные максимумы

x=0 - локальный минимум.


6. Точки перегиба.

Вторая производная функции: \boldsymbol{f''(x)=-12x^2+8}

\boldsymbol{-12x^2+8=0}\\ \boldsymbol{x_{1,2}=\dfrac{\sqrt{6} }{3}}

___-____(-√6/3)____+__(√6/3)___-____

Функция вогнутая на промежутке x \in (-\frac{\sqrt{6} }{3} ;\frac{\sqrt{6} }{3} ), а выпуклая на промежутке x \in (-\infty;-\frac{\sqrt{6} }{3} )\cup(\frac{\sqrt{6} }{3} ;+\infty)


7. Асимптоты

Здесь вертикальных асимптот нет. Найдем теперь горизонтальные асимптоты.

Горизонтальные асимптоты найдём с пределов данной функции при x\to \pm\infty

\displaystyle \boldsymbol{ \lim_{x \to \pm\infty} (-x^4+4x^2)=\pm\infty}

Предел не существует, следовательно горизонтальной асимптоты нет.

Вертикальной асимптоты нет.



4x^2-x^4 исследовать и построить график функции.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота