Чтобы число делилось на 5, оно должно заканчиваться на 0 или 5
рассмотрим те числа, которые заканчиваются на 0 тогда при условии: каждое число не должно содержать одинаковых цифр составляем числа: на первом месте может стоять любая из цифр 1,5,8,9 - 4 варианта на втором месте - любая из оставшихся ТРЕХ, (одну забрали на первое место) - 3 варианта на третьем месте стоит 0 Всего таких чисел 4*3*1=12
рассмотрим те числа, которые заканчиваются на 5 тогда на первое место мы выберем любое из 1,8,9 (0 на первом месте стоять не может) на второе место выберем из оставшихся двух и 0- всего 3 варианта значит чисел всего 3*3*1=9
В данном случае параметр a отвечает за то, на сколько единиц поднялась или опустилась парабола. Обе функции чётны (симметричны относительно Oy), поэтому если они касаются, то имеют две точки. Причём можно утверждать, что если они коснулись или пересеклись на [0; +∞), то они коснутся и на (-∞; 0]. Найдём значение a, при котором графики касаются. Достаточно рассматривать положительную полуплоскость (отсюда модуль можно опустить).
То есть если a = 0.25, то графики касаются, а значит, имеют две общие точки. Тогда если a > 0.25, то графики не имеют общих точек. Теперь посмотрим, что будет, если a < 0.25. При 0 < a < 0.25 графики имеют 4 точки, при a = 0 - 3 точки (x = -1; 0; 1), при a < 0 - две точки.
Итак, а) a ∈ (0.25; +∞) б) a ∈ ∅ в) a ∈ (-∞; 0)∪{0.25} г) a = 0
рассмотрим те числа, которые заканчиваются на 0
тогда при условии: каждое число не должно содержать одинаковых цифр
составляем числа:
на первом месте может стоять любая из цифр 1,5,8,9 - 4 варианта
на втором месте - любая из оставшихся ТРЕХ, (одну забрали на первое место) - 3 варианта
на третьем месте стоит 0
Всего таких чисел 4*3*1=12
рассмотрим те числа, которые заканчиваются на 5
тогда на первое место мы выберем любое из 1,8,9 (0 на первом месте стоять не может)
на второе место выберем из оставшихся двух и 0- всего 3 варианта
значит чисел всего 3*3*1=9
Тогда ВСЕГО 12+9=21
Обе функции чётны (симметричны относительно Oy), поэтому если они касаются, то имеют две точки. Причём можно утверждать, что если они коснулись или пересеклись на [0; +∞), то они коснутся и на (-∞; 0].
Найдём значение a, при котором графики касаются. Достаточно рассматривать положительную полуплоскость (отсюда модуль можно опустить).
То есть если a = 0.25, то графики касаются, а значит, имеют две общие точки. Тогда если a > 0.25, то графики не имеют общих точек. Теперь посмотрим, что будет, если a < 0.25. При 0 < a < 0.25 графики имеют 4 точки, при a = 0 - 3 точки (x = -1; 0; 1), при a < 0 - две точки.
Итак,
а) a ∈ (0.25; +∞)
б) a ∈ ∅
в) a ∈ (-∞; 0)∪{0.25}
г) a = 0