Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Построим квадратичную функцию. Графиком функции является парабола, ветви направлены вверх, т.к. 3>0.
Координаты вершины параболы:
x = -b/2a = 1/(2*3) = 1/6.
y=3 * (1/6)^2 - 1/6 - 2 = - 25/12
И найдем корни уравнения
D=b^2-4ac = 1 + 24 = 25
x1 = -2/3
x2 = 1
Видим, что парабола пересекает ось Ох в точке x=-2/3 и x=1
Найдем множество значений х, при которых:
а) f(x)>0
x ∈ (-∞;-2/3)∪(1;+∞)
б) f(x)<0
x ∈ (-2/3;1).
g(x) = -x^2 + 2x - 3
Найдем координаты вершины параболы(ветви параболы направлены вниз, т.к. -1<0)
x = -b/2a = -2/(-2) = 1
y = -1 + 2*1 - 3 = -2
(1;-2) - координаты вершины параболы.
Найдем множество значений х, при которых:
а) g(x)>0
Видим, что нет таких х
б) g(x) < 0
А здесь х - любое. Можно сделать так (x-1)²+2<0