Составим векторы c1 и c2 для этого вместо а и b подставим значения координат векторов приведенных в задании и руководствуясь правилами умножения и сложения векторов получим
Получаем Необходимым и достаточным условие коллинеарности двух векторов является равенство нулю их векторного произведения
векторное произведение [a,b] для произвольных векторов а=(а1,а2,а3) и b=(b1,b2,b3) вычисляется по формуле
[a,b]={a2*b3-a3*b2; a3*b1-a1*b3; a1*b2-b1*a2}
Вычисляя по этой формуле векторное произведение c1 и с2 получаем:
[c1,c2]={-169; 39; -572} он не равен нулевому вектору, значит вектора не коллинеарны Векторы будут коллинеарны тогда и только тогда, когда существует такая константа m, что с1=m*c2
чтобы выяснить ее существование рассмотрим соотношение соответсвующих координат векторов c1 и с2
Получаем что:
Значит такой константы m не существуют, векторы не коллинеарны
х;у;z;...-члены прогрессии
х; у+8;z;... - арифметическая прогрессия
х;у+1;z+11 ...-геометр.прогрессия
{y^2=xz; y^2=xz; y^2=xz; y^2=x(2y-x+16)
{y+8=(x+z)/2; 2y+16=x+z; z=2y-x+16 z=2y-x+16
{(y+1)^2=x(z+11); y^2+2y+1-xz-11x=0; y^2+2y+1-y^2-11x=0; 2y-11x+1=0
Решаем {y^2=x(2y-x+16); ((11x-1)^2)/4 -x(11x-1-x+16)=0
{2y-11x+1=0; y=(11x-1)/2
121x^2-22x+1-4x(10x+15)=0
121x^2-22x+1-40x^2-60x=0
81X^2- 82x+1=0
D1=41^2-81*1=1681-81=1600=40^2
x1=(41-40)/81=1/81; x2=(41+40)/81=1
x=1; y=(11*1-1)/2=5; z=2*5-1+16=25
x=1/81; y=1/81-1=-80/81; z=-160/81-1/81+16=1135/81-не является геом. прогрессией(может ошибка где? Проверьте
ответ. 1;5;25
;
Если я правильно понял задание то:
Составим векторы c1 и c2 для этого вместо а и b подставим значения координат векторов приведенных в задании и руководствуясь правилами умножения и сложения векторов получим
Получаем Необходимым и достаточным условие коллинеарности двух векторов является равенство нулю их векторного произведения
векторное произведение [a,b] для произвольных векторов а=(а1,а2,а3) и b=(b1,b2,b3) вычисляется по формуле
[a,b]={a2*b3-a3*b2; a3*b1-a1*b3; a1*b2-b1*a2}
Вычисляя по этой формуле векторное произведение c1 и с2 получаем:
[c1,c2]={-169; 39; -572} он не равен нулевому вектору, значит вектора не коллинеарны Векторы будут коллинеарны тогда и только тогда, когда существует такая константа m, что с1=m*c2
чтобы выяснить ее существование рассмотрим соотношение соответсвующих координат векторов c1 и с2
Получаем что:
Значит такой константы m не существуют, векторы не коллинеарны