Решение a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε. Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε. По определению это и означает, что lim x→ −2 (3x - 2) = −2
a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε.
По определению это и означает, что lim x→ −2 (3x - 2) = −2
0
Объяснение:
Находим точку, симметричную точке (2;-3) относительно оси ординат. Для этого надо поменять знак у абсциссы. Получаем точку (-2;-3)
Находим общее уравнение прямой, параллельной y = 1,5x -2,5.
у = 1,5х -2,5 => k=1,5 => y = 1,5x +b
Находим b. Для этого в уравнение y = 1,5x +b подставляем координаты точки принадлежащей данной прямой, т.е. точки (-2;-3)
1,5*(-2)+b = -3
-3+b = -3
b = -3+3
b = 0
Итак, y =1,5x - уравнение параллельной прямой у=1,5х-2,5 и проходящей через точку, симметричную точке (2;-3) относительно оси ординат.
Теперь находим абсциссу точки пересечения найденной прямой с осью абсцисс.
у = 0 - уравнение оси абсцисс
1,5 х = 0
х = 0:1,5
х = 0
(0;0) - точка пересечения прямой у=1,5х с осью Ох
х = 0 - искомая абсцисса