Площадь прямоугольника равна длине, умноженной на ширину .
(a-b)(a+b)=S₃+S₄ , прямоугольник заштрихован зелёными линиями , состоящий из суммы двух прямоугольников S₃ и S₄ .
Площадь квадрата, обведённого синим контуром равна a²=S₁+S₂+S₃ .
Площадь квадрата, обведённого жёлтым контуром равна b²=S₁ .
Если от площади квадрата а² вычесть площадь квадрата b², то получим а²-b²=(S₁+S₂+S₃)-S₁=S₂+S₃ .
Получившаяся область заштрихована красными линиями. Она состоит из суммы двух прямоугольников S₂ и S₃ , площади которых равны S₂=b(a-b)=ab-b² , S₃=a(a-b)=a²-ab .
S₂+S₃=ab-b²+a²-ab=a²-b²
S₃+S₄=a(a-b)+b(a-b)=S₃+S₂ , S₃+S₄=a²-b² .
Геометрически площадь области, заштрихованной зелёной штриховкой, равна площади области, заштрихованной красной штриховкой: S₂+S₃=S₃+S₄ .
заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=
ответ: х₁=8 и
г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5
Площадь прямоугольника равна длине, умноженной на ширину .
(a-b)(a+b)=S₃+S₄ , прямоугольник заштрихован зелёными линиями , состоящий из суммы двух прямоугольников S₃ и S₄ .
Площадь квадрата, обведённого синим контуром равна a²=S₁+S₂+S₃ .
Площадь квадрата, обведённого жёлтым контуром равна b²=S₁ .
Если от площади квадрата а² вычесть площадь квадрата b², то получим а²-b²=(S₁+S₂+S₃)-S₁=S₂+S₃ .
Получившаяся область заштрихована красными линиями. Она состоит из суммы двух прямоугольников S₂ и S₃ , площади которых равны S₂=b(a-b)=ab-b² , S₃=a(a-b)=a²-ab .
S₂+S₃=ab-b²+a²-ab=a²-b²
S₃+S₄=a(a-b)+b(a-b)=S₃+S₂ , S₃+S₄=a²-b² .
Геометрически площадь области, заштрихованной зелёной штриховкой, равна площади области, заштрихованной красной штриховкой: S₂+S₃=S₃+S₄ .