1. Раскроем скобки в левой части выражения (правую часть оставляем без изменений):
х²+12х-12х-144 = 2(х-6)²-х²
2. Посмотрим внимательнее на правую часть. В правой части стоит квадрат разности, а это формулы сокращённого умножения. Привожу формулу квадрата разности:
(a-b)² = a²-2ab+b²
3. Теперь раскроем скобки в правой части выражения, применив данную формулу (левую часть оставим без изменений):
х²+12х-12х-144 = 2(х²-2·х·6+6²)-х²
4. Для удобства мы раскрыли скобки не до конца. Раскроем их окончательно (левую часть оставим без изменений):
х²+12х-12х-144 = 2х²-2·2·х·6+2·6²-х²
5. Преобразуем обе части получившегося выражения (приведём подобные слагаемые и т.д.):
х²-144 = 2х²-24х+72-х²
х²-144 = х²-24х+72
6. Обе части уравнения максимально упрощены. Решим его:
Объяснение:
1. 2x2 - 3x + 2 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-3)2 - 4·2·2 = 9 - 16 = -7
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
2. 3x2 - 3x - 6 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-3)2 - 4·3·(-6) = 9 + 72 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -1
x2 = 2
3. 2x2 + 12x - 18 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 122 - 4·(-2)·(-18) = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительный корень:
x = 3
4. x2 + x - 20 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 12 - 4·1·(-20) = 1 + 80 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -5
x2 = 4
5. -x2 + 5x - 6 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 52 - 4·(-1)·(-6) = 25 - 24 = 1
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 3
x2 = 2
1. Раскроем скобки в левой части выражения (правую часть оставляем без изменений):
х²+12х-12х-144 = 2(х-6)²-х²
2. Посмотрим внимательнее на правую часть. В правой части стоит квадрат разности, а это формулы сокращённого умножения. Привожу формулу квадрата разности:
(a-b)² = a²-2ab+b²
3. Теперь раскроем скобки в правой части выражения, применив данную формулу (левую часть оставим без изменений):
х²+12х-12х-144 = 2(х²-2·х·6+6²)-х²
4. Для удобства мы раскрыли скобки не до конца. Раскроем их окончательно (левую часть оставим без изменений):
х²+12х-12х-144 = 2х²-2·2·х·6+2·6²-х²
5. Преобразуем обе части получившегося выражения (приведём подобные слагаемые и т.д.):
х²-144 = 2х²-24х+72-х²
х²-144 = х²-24х+72
6. Обе части уравнения максимально упрощены. Решим его:
х²-х²+24х = 72+144
24х = 216
х = 216/24
х = 9