Постройте график функции y=x2. С графика найдите: а) значения функции при значении аргумента, равном -4;0;2; б) значения аргумента, если значение функции равно 1;0;9; в)наибольшее и наименьшее значения функции на отрезке [-1;2]; г) значения аргумента, при которых 1<y<9если у = 9, то х =3, х=-3если у = 1, то х =1, х=-1если у = 0, то х =0Значения функции определяются по графикуу=х2 = 2 в квадрате = 4у=х2=(-4)2 = 16у=х2 = 0 в квадрате = 0Находим значния функцииНаибольшее значение функции равно 4, при х =2Находим значение аргументаНаименьшее значении функции равно 0, при х=0график этой функции является парабола с центром точке (0;0)
у = х + х³, y(-x) = (-x) + (-x)³ = -x - x³ = - (x + x³) - ф-ция нечетноя;
у = х² - 2, y(-x) = (-x)² - 2 = x² - 2 - четноя;
х^3 (-х)³ х³
у= ; у(-х) = = - - нечетная
х²+1 (-х)² + 1 х² + 1
1 1 1 1
у = х + ---, у(-х) = -х + = -х - = - (х + ) - нечетная
х -х х х
у = √1 - х²; у(-х ) = √1 - (-х)² = √1 - х² - четная
у = ³√х², у(-х) = ∛(-х)² = ∛х² - четная