В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

И НЕ НАДО ПЕРЕПИСАТЬ У ФОТОМАТЧА И ОТПРАВЛЯТЬ ИНАЧЕ БАН​

Показать ответ
Ответ:
unitolog
unitolog
09.04.2022 07:21

ответ: неравенства доказаны.

Объяснение:

1) так как a*b>0, то числа a и b должны иметь один знак. Но тогда число c=a/b будет положительным, т.е. c>0. Нам нужно доказать, что c+1/c≥2. Обозначим c+1/c=d. Это равенство можно переписать в виде: (c²+1)/c=d, или c²-d*c+1=(c-d/2)²-d²/4+1=0. Отсюда (c-d/2)²=d²/4-1, и так как (c-d/2)²≥0, то и d²/4-1≥0. Отсюда d≥2 либо d≤-2, но так как число d - положительное, то d≥2. Таким образом, c+1/c=a/b+b/a=d≥2 - неравенство доказано.

2) раскрывая скобки, получаем неравенство 1+a/b+b/a+1≥4, или a/b+b/a≥2. Но это неравенство уже доказано выше, а этим доказывается и данное неравенство.

0,0(0 оценок)
Ответ:
antonovneeck
antonovneeck
29.10.2021 23:45

Объяснение:

См. на фотографии.

Допустим, возможна такая раскраска, что не образует одноцветного треугольника. Исследуем это допущение.

Рассмотрим произвольный треугольник в любом из 6-угольников, образованный тремя вершинами (через одну) 6-угольника мозаики.

Очевидно, что из трех вершин такого треугольника две будут одинакового цвета.

Пусть, это будет треугольник (123), а "одинаковый цвет" - черный. (здесь и далее см. рисунок)

Допустим, точки 1 и 2 - черного цвета. Тогда очевидно, что т.3 - белая, ибо иначе будет одноцветный треугольник (123). По той же причине, белая будет т.4 (треугольник (124) не может быть одноцветным).

Однако вследствие того что точки 3 и 4 белые, точка 5 - должна быть черной (иначе треугольник (345) будет одноцветным). Далее, во избежание одноцветного треугольника (156) точку 6 нужно делать белой.

И тут мы приходим к противоречию. Точка 7 (на рисунке означена крестиком)не может быть "покрашена" в соответствии с нашим допущением

- белый цвет даст нам одноцветный ∆(637)

- черный цвет даст нам одноцветный ∆(527)

Мы пришли к противоречию. Следовательно, предположение неверно, и при любой "раскраске" всегда найдутся три одноцветные вершины, образующие равносторонний треугольник

При выборе других 2 вершин одного цвета или белого цвета вместо черного - доказательство абсолютно аналогично.

Ч.т.д.


№4 ! Шестиугольники на фотографии ! На картинке вы видите часть большой решётки, составленной из шес
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота