И). не виконуючи побудов, знайдіть точки перетину графі- ків функцій у = -4x' iy = 2х. 1. побудуйте графік функції у = x° - 4х – 5 та знайдіть: 1) область значень функції; 2) проміжок зростання та проміжок спадання функції.
1. Если это решение, то при подстановке координат в уравнение получим верное равенство. Проверяем: 2*(-3)-3*2=-6-6=-12 не равно нулю. Значит пара чисел (-3,2) не является решением данного уравнения. 2. х=у, тогда перепишем уравнение 3у-9у=18 -6у=18 у=-3 ответ:(-3,-3) 3. Подставляем в уравнение заместо у 2, получаем 4х-10=10 4х=20 х=5 ответ: точка А имеет абсциссу 2 4. Решим систему уравнений а-2b=1 -2a+7b=1 домножим первой уравнение на 2, получаем новую систему: 2a-4b=2 -2a+7b=1 Складываем эти уравнения, получаем 3b=3, b=1 Подставляем значение b в первое уравнение а-2=1 а=3 ответ: 1 5. 23*(-1)+4*7=-23+28=5=5 является 6. х=у у-7у=12 -6у=12 у=-2 ответ: (-2,-2) 7. 12*1-5у=23 12-5у=23 -5у=23-12 -5у=11 у=-5,5 ответ: ордината равна -5,5
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
2. х=у, тогда перепишем уравнение 3у-9у=18
-6у=18
у=-3
ответ:(-3,-3)
3. Подставляем в уравнение заместо у 2, получаем 4х-10=10
4х=20
х=5
ответ: точка А имеет абсциссу 2
4. Решим систему уравнений
а-2b=1
-2a+7b=1
домножим первой уравнение на 2, получаем новую систему:
2a-4b=2
-2a+7b=1
Складываем эти уравнения, получаем 3b=3, b=1
Подставляем значение b в первое уравнение
а-2=1
а=3
ответ: 1
5. 23*(-1)+4*7=-23+28=5=5 является
6. х=у
у-7у=12
-6у=12
у=-2
ответ: (-2,-2)
7. 12*1-5у=23
12-5у=23
-5у=23-12
-5у=11
у=-5,5
ответ: ордината равна -5,5