Г) использую факт: если есть n объектов, то их можно упорядочить Поставим x1 на первое место и забудем про него. Надо расставлять оставшиеся 5 элементов. - Если расставлять элементы как угодно, получится 5! = 120 вариантов. - Если x6 поставить на последнее место, то остальные 4 элемента можно распределить Тогда, число расставить так, что x6 не на последнем месте, равно 5! - 4! = 96.
ж) Если "перед" означает "сразу перед": можно "склеить" элементы x1 и x6 вместе, и распределять новый "склеенный" элемент и остальные 4 элемента произвольно. 5 элементов можно упорядочивать 5! = 120 вариантами. Если "перед" допускает, что x1 и x6 стоят не подряд: очевидно, в каждой расстановке какой-то из элементов стоит перед другим, при этом число комбинаций, когда x1 стоит перед x6, равно числу комбинаций, когда x6 стоит перед x1. Тогда x1 стоит перед x6 ровно в половине случаев. 6 элементов можно расставить тогда ответ 6! / 2 = 360.
д) x1 и x6 стоят рядом = x1 стоит сразу перед x6 ИЛИ x6 стоит сразу перед x1 Число в первом и втором случае, очевидно, равны и уже рассчитаны в предыдущем пункте. ответ: 2 * 5! = 240.
е) Если всего есть упорядочить, и рядом элементы стоят в 2 * 5! случаях, то упорядочить так, что элементы стоят не рядом, ровно 6! - 2 * 5! = 4 * 5! = 480.
Отыщем область значений указанной функции. Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии: . Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть, , где . То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт . Теперь считаем, какие целые числа входят в полученную область значений. 0, 1, 2, 3 - и всё. Их ровно 4.
Поставим x1 на первое место и забудем про него. Надо расставлять оставшиеся 5 элементов.
- Если расставлять элементы как угодно, получится 5! = 120 вариантов.
- Если x6 поставить на последнее место, то остальные 4 элемента можно распределить
Тогда, число расставить так, что x6 не на последнем месте, равно 5! - 4! = 96.
ж) Если "перед" означает "сразу перед": можно "склеить" элементы x1 и x6 вместе, и распределять новый "склеенный" элемент и остальные 4 элемента произвольно. 5 элементов можно упорядочивать 5! = 120 вариантами.
Если "перед" допускает, что x1 и x6 стоят не подряд: очевидно, в каждой расстановке какой-то из элементов стоит перед другим, при этом число комбинаций, когда x1 стоит перед x6, равно числу комбинаций, когда x6 стоит перед x1. Тогда x1 стоит перед x6 ровно в половине случаев. 6 элементов можно расставить тогда ответ 6! / 2 = 360.
д) x1 и x6 стоят рядом = x1 стоит сразу перед x6 ИЛИ x6 стоит сразу перед x1
Число в первом и втором случае, очевидно, равны и уже рассчитаны в предыдущем пункте. ответ: 2 * 5! = 240.
е) Если всего есть упорядочить, и рядом элементы стоят в 2 * 5! случаях, то упорядочить так, что элементы стоят не рядом, ровно 6! - 2 * 5! = 4 * 5! = 480.
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
, где .
То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт .
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.