Пусть вся работа 1 (единица), тогда первый рабочий может выполнить работу за х дней, а второй за у дней. Следовательно совместная производительность будет (1/х)+(1/у) или 1/4 . Если первый выполнит треть работы: (1/3)х , а второй остальную часть: (2/3)у , то работу выполнят за 10 дней. Составим два уравнения:
1) скорость течения реки Vр = 2.4 км/ч.
2) 65 вопросов.
Объяснение:
1. v1 = v2; t=2 часа.
Путь S=vt.
По течению S1=2(v1+vp);
Против течения S=2(v2-vp).
v1=v2=v. S1-S2=9.6 км.
2(v+vp)-2(v-vp)=9.6;
2v+2vp-2v+2vp=9.6;
4vp=9.6 ;
vp=9.6:4;
vp= 2.4 км/ч.
***
2. Петя - за 60 мин - 13 вопросов;
Ваня за 60 мин - 15 вопросов
Скорость ответов Пети равна 13/60;
Скорость ответов Вани равна 15/60.
Обозначим количество вопросов теста через х.
Тогда Петя затратил на ответы х/(13/60) минут;
а Ваня затратил - х/(15/60) минут;
Разность во времени ответов равна 40 минут.
х/(13/60)-х/(15/60)=40;
60x/13-60х/15=40; (Наименьший общий знаменатель равен 13*15=195 ).
Дополнительные множители 15, 13 и 195;
900х - 780х =7800;
120х=7800;
х=7800/120;
х=65.
Відповідь:
Пусть вся работа 1 (единица), тогда первый рабочий может выполнить работу за х дней, а второй за у дней. Следовательно совместная производительность будет (1/х)+(1/у) или 1/4 . Если первый выполнит треть работы: (1/3)х , а второй остальную часть: (2/3)у , то работу выполнят за 10 дней. Составим два уравнения:
(1/х)+(1/у)=1/4
(1/3)х+(2/3)у=10
Выделим х во втором уравнении:
(1/3)х+(2/3)у=10
(х+2у)/3=10
х=30-2у
Подставим значение х в первое уравнение:
(1/(30-2у))+(1/у)=1/4
4у+120-8у=30у-2у²
2у²-34у+120=0
Пояснення: