(х-2)(х+3)/(х-4)>=0
x^2+3x-2x-6/x-4 >=0
x^2-x-6/x-4 >=0
x^2-x-6=0
d=1+24=25=5^2
x1=1+5/2=3
x2=1-5/2=-2
x^2-x-6=(x-3)(x+2)>=0
x принадлежит (-бесконечности: -3] в обьединении [2;+бесконечности)
х принадлежит (4:+бесконечности)
обьединяем
х(х+1)(х-1)/(x+2)(х-2)>=0
(x^2+x)(x-1)/(x+2)(х-2)>=0
x^3-x^2+x^2-x/(x+2)(х-2)>=0
x(x^2-1)/(x+2)(х-2)>=0
x принадлежит (-бесконечности: -1] в обьединении [1:+бесконечности)
x принадлежит(-бесконечности: -2) в обьединении (2:+бесконечности)
х принадлежит(-2:-1] в обьединении [1;2)
квадратные скобки значат что значение включается в промежуток, круглые не включают
х²·( х - 3) + 2х·(3 - х)² = 0
Квадраты противоположных выражений равны, поэтому (3 - х)² = (х - 3)², получим
х²·( х - 3) + 2х· (х - 3)² = 0
Вынесем за скобки общий множитель х·( х - 3):
х·( х - 3)·(х + 2·(х - 3) ) = 0
х·( х - 3)·(х + 2·х - 6 ) = 0
х·( х - 3)·(3·х - 6 ) = 0
3·х·( х - 3)·(х - 2 ) = 0
х = 0 или х - 3 = 0, или х - 2 = 0
х = 3 х = 2
ответ: 0; 2; 3.
Проверка:
!) Если х = 0, то 0²·( 0 - 3) + 2·0·(3 - 0)² = 0, 0 = 0 - верно
2) Если х = 2, то 2²·( 2 - 3) + 2·2·(3 - 2)² = 0, 0 = 0 - верно
3) Если х = 3, то 3²·( 3 - 3) + 2·3·(3 - 3)² = 0, 0 = 0 - верно
(х-2)(х+3)/(х-4)>=0
x^2+3x-2x-6/x-4 >=0
x^2-x-6/x-4 >=0
x^2-x-6=0
d=1+24=25=5^2
x1=1+5/2=3
x2=1-5/2=-2
x^2-x-6=(x-3)(x+2)>=0
x принадлежит (-бесконечности: -3] в обьединении [2;+бесконечности)
х принадлежит (4:+бесконечности)
обьединяем
х принадлежит (4:+бесконечности)
х(х+1)(х-1)/(x+2)(х-2)>=0
(x^2+x)(x-1)/(x+2)(х-2)>=0
x^3-x^2+x^2-x/(x+2)(х-2)>=0
x(x^2-1)/(x+2)(х-2)>=0
x принадлежит (-бесконечности: -1] в обьединении [1:+бесконечности)
x принадлежит(-бесконечности: -2) в обьединении (2:+бесконечности)
обьединяем
х принадлежит(-2:-1] в обьединении [1;2)
квадратные скобки значат что значение включается в промежуток, круглые не включают