Т. к исходный график параллелен прямой у=3х-1 , значит, в исходной формуле к=3, так как график проходит через точку м(2; 1), то можно подставить в формулу у=кх+b вместо х и у значения 2 и 1 соответственно и k=3, получаем: 1=3*2+b 1=6+b b=-5 y=3x-5чертим систему координат, отмечаем положительные направления стрелками вправо и вверх, подписываем оси вправо - х, вверх -у. отмечаем начало координат - точка о и единичные отрезки по каждой оси в 1 клетку. графиком является прямая, для её построения достаточно двух точек, запишем их координаты в таблицу: х= 0 3 у= -5 1 ставим координаты в системе и проводим через них прямую линию. подписываем график у=3х-5.
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
ответ: 24 см и 12 см.
Объяснение:
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
(a-b)/2=6
(a+b)/2=18
или:
a-b=12
a+b=36
Решая её, находим a=24 см и b=12 см.