Имеет ли смысл выражение √2-y , если у = 3?
найти область определения функции у = √x+ 3
выберите правильное решение системы линейных неравенств
{x > 2,
{x> -3.
общей частью двух промежутков (-2, 0) и (3, 5) является промежуток
a. ø
b. (0; 3)
c. (-2; 5)
d. (-2; 3)
решить двойное неравенство 24 < 3x < 72.
решением системы неравенств
{x+3 > 4, есть
{x-3 < 0
Нулем функции y = f(x) называется такое значение аргумента при котором значение функции = 0.
1) y = x² - 6x -27 ;
y=0; x² - 6x -27 = 0;
D = b² - 4ac = 6² - 4*1*(-27) = 36 + 108 = 144 = 12²;
x₁ = (-b + √D)/2a = (6 + 12)/2 = 18/2 = 9;
x₂ = (-b - √D)/2a = (6 - 12)/2 = -6/2 = -3;
Нулями функции y = x² - 6x -27 являются значения x₁ = 9; x₂ = -3;
2) y = x² - 5x +8;
y = 0; x² - 5x +8 = 0;
D = b² - 4ac = 5² - 4*1*8 = 25 - 32 = -7; D<0.
Дискриминант меньше нуля. Квадратное уравнение не имеет корней. Функция y = x² - 5x +8 не имеет нулей.
а)x=-2/3 => y=3*(-2/3)² + 2*(-2/3)-5 = 3*4/9 - 4/3 - 5 = 4/3 - 4/3 - 5 = -5;
y=-5;
б)0=3x²+2x-5
D=b²-4ac, D=2² - 4 * 3 * (-5)=64;
x1=(-b-√D)/2a, x2=(-b+√D)/2a
x1=(-2-8)/2*3=-5/3;
x2=(-2+8)/2*3=1.
x1=-5/3 (целые сам выведешь) и x2=1- нули функции.
№3 К этому номеру будет фотография (а)
б)при х∈(-∞;-2)∪(2;+∞);
в) функция убывает при x∈[0;=∞).
№4 x²-3x+2
Приравняю к нулю => x²-3x+2=0;
D=b^2-4ac,
D=(-3)²-4*2*1=1;
x1=(-b-√D)/2a, x2=(-b+√D)/2a
x1=(3-1)/2*1=1, x2=(3+1)/2*1=2
ответ: 1;2.
№5 y=2(x-4)²-2
Тут даже не заморачивайся тут просто можно сразу написать, на всякий случай объясню как это работает: 1)y=ax²+n получен из y=ax² параллельным переносом вдоль оси Oy на n единиц вверх (при n>0) и на n единиц вниз (при n<0).2)y=a(x-m)² получен из y=ax² параллельным переносом вдоль оси Ox на m единиц вправо (при m>0) и на m единиц влево (при m<0).
№6 Ты мне сказал не решать.
№7 в-вершина, xв=-1, yв=5;
y=x²+px+q;
xв=-b/2a=-p/2;
-p=xв*2;
-p=-1*2=-2;
p=2;
Подставим все имеющиеся переменные в функцию y=x²+px+q:
5=(-1)²+2*(-1)+q;
5=1-2+q;
5=q-1;
q=5+1=6
ответ: при p=2 и q=6 вершина параболы y = x2 + pх + q находится в точке (-1;5).